Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase retrieval beyond the homogeneous object assumption for X-ray in-line holographic imaging (2403.00461v1)

Published 1 Mar 2024 in eess.IV and physics.optics

Abstract: X-ray near field holography has proven to be a powerful 2D and 3D imaging technique with applications ranging from biomedical research to material sciences. To reconstruct meaningful and quantitative images from the measurement intensities, however, it relies on computational phase retrieval which in many cases assumes the phase-shift and attenuation coefficient of the sample to be proportional. Here, we demonstrate an efficient phase retrieval algorithm that does not rely on this homogeneous-object assumption and is a generalization of the well-established contrast-transfer-function (CTF) approach. We then investigate its stability and present an experimental study comparing the proposed algorithm with established methods. The algorithm shows superior reconstruction quality compared to the established CTF-based method at similar computational cost. Our analysis provides a deeper fundamental understanding of the homogeneous object assumption and the proposed algorithm will help improve the image quality for near-field holography in biomedical applications

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. T. Salditt and M. Töpperwien, “Holographic imaging and tomography of biological cells and tissues,” in Topics in Applied Physics, (Springer International Publishing, 2020), pp. 339–376.
  2. P. J. Withers, C. Bouman, S. Carmignato, V. Cnudde, D. Grimaldi, C. K. Hagen, E. Maire, M. Manley, A. Du Plessis, and S. R. Stock, “X-ray computed tomography,” \JournalTitleNature Reviews Methods Primers 1 (2021).
  3. T. Salditt, M. Osterhoff, M. Krenkel, R. N. Wilke, M. Priebe, M. Bartels, S. Kalbfleisch, and M. Sprung, “Compound focusing mirror and x-ray waveguide optics for coherent imaging and nano-diffraction,” \JournalTitleJournal of Synchrotron Radiation 22, 867–878 (2015).
  4. J. Soltau, M. Vassholz, M. Osterhoff, and T. Salditt, “In-line holography with hard x-rays at sub-15 nm resolution,” \JournalTitleOptica 8, 818 (2021).
  5. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” \JournalTitleJournal of Microscopy 206, 33–40 (2002).
  6. Y. D. Witte, M. Boone, J. Vlassenbroeck, M. Dierick, and L. V. Hoorebeke, “Bronnikov-aided correction for x-ray computed tomography,” \JournalTitleJ. Opt. Soc. Am. A 26, 890–894 (2009).
  7. R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” \JournalTitleOptik 35, 237–246 (1972).
  8. D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” \JournalTitleInverse Problems 21, 37–50 (2004).
  9. J. Hagemann, M. Töpperwien, and T. Salditt, “Phase retrieval for near-field x-ray imaging beyond linearisation or compact support,” \JournalTitleApplied Physics Letters 113, 041109 (2018).
  10. V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin, “Non-linear iterative phase retrieval based on frechet derivative,” \JournalTitleOptics Express 19, 22809 (2011).
  11. F. Wittwer, J. Hagemann, D. Brückner, S. Flenner, and C. G. Schroer, “Phase retrieval framework for direct reconstruction of the projected refractive index applied to ptychography and holography,” \JournalTitleOptica 9, 295 (2022).
  12. S. Huhn, L. M. Lohse, J. Lucht, and T. Salditt, “Fast algorithms for nonlinear and constrained phase retrieval in near-field x-ray holography based on tikhonov regularization,” \JournalTitleOpt. Express 30, 32871–32886 (2022).
  13. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” \JournalTitleApplied Physics Letters 75, 2912–2914 (1999).
  14. A. Kostenko, K. J. Batenburg, H. Suhonen, S. E. Offerman, and L. J. van Vliet, “Phase retrieval in in-line x-ray phase contrast imaging based on total variation minimization,” \JournalTitleOpt. Express 21, 710–723 (2013).
  15. P. Villanueva-Perez, F. Arcadu, P. Cloetens, and M. Stampanoni, “Contrast-transfer-function phase retrieval based on compressed sensing,” \JournalTitleOpt. Lett. 42, 1133–1136 (2017).
  16. K. Mom, M. Langer, and B. Sixou, “Nonlinear primal–dual algorithm for the phase and absorption retrieval from a single phase contrast image,” \JournalTitleOptics Letters 47, 5389 (2022).
  17. L. D. Turner, B. B. Dhal, J. P. Hayes, A. P. Mancuso, K. A. Nugent, D. Paterson, R. E. Scholten, C. Q. Tran, and A. G. Peele, “X-ray phase imaging: Demonstration of extended conditions with homogeneous objects,” \JournalTitleOpt. Express 12, 2960–2965 (2004).
  18. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” \JournalTitleReview of Scientific Instruments 76, 073705 (2005).
  19. S. Maretzke, “A uniqueness result for propagation-based phase contrast imaging from a single measurement,” \JournalTitleInverse Problems 31, 065003, 16 (2015).
  20. S. Maretzke and T. Hohage, “Stability estimates for linearized near-field phase retrieval in x-ray phase contrast imaging,” \JournalTitleSIAM Journal on Applied Mathematics 77, 384–408 (2017).
  21. P. Cloetens, W. Ludwig, J. Baruchel, J.-P. Guigay, P. Pernot-Rejmánková, M. Salomé-Pateyron, M. Schlenker, J.-Y. Buffière, E. Maire, and G. Peix, “Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam,” \JournalTitleJournal of Physics D: Applied Physics 32, A145–A151 (1999).
  22. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” \JournalTitleFoundations and Trends in Machine learning 3, 1–122 (2011).
  23. T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternating direction optimization methods,” \JournalTitleSIAM Journal on Imaging Sciences 7, 1588–1623 (2014).
  24. M. Langer, P. Cloetens, and F. Peyrin, “Regularization of phase retrieval with phase-attenuation duality prior for 3-d holotomography,” \JournalTitleIEEE Transactions on Image Processing 19, 2428–2436 (2010).
  25. J. Hagemann, M. Vassholz, H. Hoeppe, M. Osterhoff, J. M. Rosselló, R. Mettin, F. Seiboth, A. Schropp, J. Möller, J. Hallmann, C. Kim, M. Scholz, U. Boesenberg, R. Schaffer, A. Zozulya, W. Lu, R. Shayduk, A. Madsen, C. G. Schroer, and T. Salditt, “Single-pulse phase-contrast imaging at free-electron lasers in the hard x-ray regime,” \JournalTitleJournal of Synchrotron Radiation 28, 52–63 (2021).
  26. T. Schoonjans, A. Brunetti, B. Golosio, M. S. del Rio, V. A. Solé, C. Ferrero, and L. Vincze, “The xraylib library for x-ray–matter interactions. recent developments,” \JournalTitleSpectrochimica Acta Part B: Atomic Spectroscopy 66, 776–784 (2011).
  27. Q. Jin, “On a class of frozen regularized gauss-newton methods for nonlinear inverse problems,” \JournalTitleMathematics of Computation 79, 2191–2211 (2010).

Summary

We haven't generated a summary for this paper yet.