Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Base Complex: Extract and Visualize Structure of Hex-dominant Meshes (2403.00300v1)

Published 1 Mar 2024 in cs.GR

Abstract: Hex-dominant mesh generation has received significant attention in recent research due to its superior robustness compared to pure hex-mesh generation techniques. In this work, we introduce the first structure for analyzing hex-dominant meshes. This structure builds on the base complex of pure hex-meshes but incorporates the non-hex elements for a more comprehensive and complete representation. We provide its definition and describe its construction steps. Based on this structure, we present an extraction and categorization of sheets using advanced graph matching techniques to handle the non-hex elements. This enables us to develop an enhanced visual analysis of the structure for any hex-dominant meshes.We apply this structure-based visual analysis to compare hex-dominant meshes generated by different methods to study their advantages and disadvantages. This complements the standard quality metric based on the non-hex element percentage for hex-dominant meshes. Moreover, we propose a strategy to extract a cleaned (optimized) valence-based singularity graph wireframe to analyze the structure for both mesh and sheets. Our results demonstrate that the proposed hybrid base complex provides a coarse representation for mesh element, and the proposed valence singularity graph wireframe provides a better internal visualization of hex-dominant meshes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. T. Schneider, J. Dumas, X. Gao, M. Botsch, D. Panozzo, and D. Zorin, “Poly-spline finite-element method,” ACM Trans. Graph., vol. 38, no. 3, mar 2019.
  2. S. C. Tadepalli, A. Erdemir, and P. R. Cavanagh, “Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear,” Journal of biomechanics, vol. 44, no. 12, pp. 2337–2343, 2011.
  3. T. Schneider, Y. Hu, X. Gao, J. Dumas, D. Zorin, and D. Panozzo, “A large-scale comparison of tetrahedral and hexahedral elements for solving elliptic pdes with the finite element method,” ACM Trans. Graph., vol. 41, no. 3, pp. 1–14, 2022.
  4. P.-A. Beaufort, M. Reberol, H. Liu, F. Ledoux, and D. Bommes, “Hex me if you can,” arXiv preprint arXiv:2111.10295, 2021.
  5. H. Liu, P. Zhang, E. Chien, J. Solomon, and D. Bommes, “Singularity-constrained octahedral fields for hexahedral meshing,” ACM Trans. Graph., vol. 37, no. 4, jul 2018.
  6. N. Pietroni, M. Campen, A. Sheffer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J. Remacle, and M. Livesu, “Hex-mesh generation and processing: a survey,” ACM Trans. Graph., vol. 42, no. 2, pp. 1–44, 2022.
  7. P.-E. Bernard, J.-F. Remacle, N. Kowalski, and C. Geuzaine, “Frame field smoothness-based approach for hex-dominant meshing,” Computer-Aided Design, vol. 72, pp. 78–86, 2016, 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation.
  8. M. Livesu, N. Pietroni, E. Puppo, A. Sheffer, and P. Cignoni, “Loopycuts: Practical feature-preserving block decomposition for strongly hex-dominant meshing,” ACM Trans. Graph., vol. 39, no. 4, pp. 121–1, 2020.
  9. X. Gao, W. Jakob, M. Tarini, and D. Panozzo, “Robust hex-dominant mesh generation using field-guided polyhedral agglomeration,” ACM Trans. Graph., vol. 36, no. 4, pp. 1–13, 2017.
  10. D. R. Bukenberger, M. Tarini, and H. P. Lensch, “At-most-hexa meshes,” in Computer Graphics Forum, vol. 41, no. 1.   Wiley Online Library, 2022, pp. 7–28.
  11. X. Gao, Z. Deng, and G. Chen, “Hexahedral mesh re-parameterization from aligned base-complex,” ACM Trans. Graph., vol. 34, no. 4, pp. 1–10, 2015.
  12. K. Xu and G. Chen, “Hexahedral mesh structure visualization and evaluation,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 1173–1182, 2018.
  13. X. Gao, T. Martin, S. Deng, E. Cohen, Z. Deng, and G. Chen, “Structured volume decomposition via generalized sweeping,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 7, pp. 1899–1911, July 2016.
  14. X. Gao, H. Shen, and D. Panozzo, “Feature preserving octree-based hexahedral meshing,” in Computer Graphics Forum, vol. 38, no. 5.   Wiley Online Library, 2019, pp. 135–149.
  15. L. Pitzalis, M. Livesu, G. Cherchi, E. Gobbetti, and R. Scateni, “Generalized adaptive refinement for grid-based hexahedral meshing,” ACM Trans. Graph., vol. 40, no. 6, pp. 1–13, 2021.
  16. J. Gregson, A. Sheffer, and E. Zhang, “All-hex mesh generation via volumetric polycube deformation,” Computer Graphics Forum, vol. 30, no. 5, pp. 1407–1416, 2011.
  17. M. Livesu, N. Vining, A. Sheffer, J. Gregson, and R. Scateni, “Polycut: monotone graph-cuts for polycube base-complex construction,” ACM Trans. Graph., vol. 32, no. 6, p. 171, 2013.
  18. J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao, and M. Desbrun, “L1-based construction of polycube maps from complex shapes,” ACM Trans. Graph., vol. 33, no. 3, pp. 25:1–25:11, 2014.
  19. X. Fang, W. Xu, H. Bao, and J. Huang, “All-hex meshing using closed-form induced polycube,” ACM Trans. Graph., vol. 35, no. 4, pp. 124:1–124:9, Jul. 2016.
  20. H.-X. Guo, X. Liu, D.-M. Yan, and Y. Liu, “Cut-enhanced polycube-maps for feature-aware all-hex meshing,” ACM Trans. Graph., vol. 39, no. 4, pp. 106–1, 2020.
  21. J. Huang, Y. Tong, H. Wei, and H. Bao, “Boundary aligned smooth 3d cross-frame field,” ACM Trans. Graph., vol. 30, no. 6, pp. 143:1–143:8, Dec. 2011.
  22. M. Nieser, U. Reitebuch, and K. Polthier, “Cubecover- parameterization of 3d volumes,” Computer Graphics Forum, vol. 30, no. 5, pp. 1397–1406, 2011.
  23. Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo, “All-hex meshing using singularity-restricted field,” ACM Trans. Graph., vol. 31, no. 6, pp. 177:1–177:11, Nov. 2012.
  24. T. Jiang, J. Huang, Y. T. Yuanzhen Wang, and H. Bao, “Frame field singularity correction for automatic hexahedralization,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 8, pp. 1189–1199, Aug. 2014.
  25. T. Blacker, “Automated conformal hexahedral meshing constraints, challenges and opportunities,” Engineering with Computers, vol. 17, no. 3, pp. 201–210, 2001.
  26. N. Ray, D. Sokolov, M. Reberol, F. Ledoux, and B. Lévy, “Hex-dominant meshing: mind the gap!” Computer-Aided Design, vol. 102, pp. 94–103, 2018.
  27. S. Meshkat and D. Talmor, “Generating a mixed mesh of hexahedra, pentahedra and tetrahedra from an underlying tetrahedral mesh,” International Journal for Numerical Methods in Engineering, vol. 49, no. 1-2, pp. 17–30, 2000.
  28. S. J. Owen, “Hex-dominant mesh generation using 3d constrained triangulation,” Computer-Aided Design, vol. 33, no. 3, pp. 211–220, 2001.
  29. S. Yamakawa and K. Shimada, “Hexhoop: modular templates for converting a hex-dominant mesh to an all-hex mesh,” Engineering with computers, vol. 18, no. 3, pp. 211–228, 2002.
  30. J. Pellerin, A. Johnen, K. Verhetsel, and J.-F. Remacle, “Identifying combinations of tetrahedra into hexahedra: A vertex based strategy,” Computer-Aided Design, vol. 105, pp. 1–10, 2018.
  31. B. Lévy and Y. Liu, “lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT centroidal voronoi tessellation and its applications,” ACM Trans. Graph., vol. 29, no. 4, pp. 1–11, 2010.
  32. D. Sokolov, N. Ray, L. Untereiner, and B. Lévy, “Hexahedral-dominant meshing,” ACM Trans. Graph., vol. 35, no. 5, p. 157, 2016.
  33. N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic global parameterization,” ACM Trans. Graph., vol. 25, no. 4, pp. 1460–1485, 2006.
  34. Y. Yu, J. G. Liu, and Y. J. Zhang, “Hexdom: polycube-based hexahedral-dominant mesh generation,” in Mesh Generation and Adaptation.   Springer, 2022, pp. 137–155.
  35. X. Gao, D. Panozzo, W. Wang, Z. Deng, and G. Chen, “Robust structure simplification for hex re-meshing,” ACM Trans. Graph., vol. 36, no. 6, pp. 1–13, 2017.
  36. M. N. Akram, G. Chen, and Y. Zhang, “Impact of hex-mesh structure to simulation quality – a first study,” in 28th International Meshing Roundtable, Research Abstract, 2019.
  37. H. Brückler, O. Gupta, M. Mandad, and M. Campen, “The 3D Motorcycle Complex for Structured Volume Decomposition,” Computer Graphics Forum, 2022.
  38. D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf, “Motorcycle graphs: Canonical quad mesh partitioning,” in Computer Graphics Forum, vol. 27, no. 5.   Wiley Online Library, 2008, pp. 1477–1486.
  39. H. Brückler, D. Bommes, and M. Campen, “Volume parametrization quantization for hexahedral meshing,” ACM Trans. Graph., vol. 41, no. 4, pp. 1–19, 2022.
  40. N. Schertler, D. Panozzo, S. Gumhold, and M. Tarini, “Generalized motorcycle graphs for imperfect quad-dominant meshes,” ACM Trans. Graph., vol. 37, no. 4, 2018.
  41. M. Bracci, M. Tarini, N. Pietroni, M. Livesu, and P. Cignoni, “Hexalab. net: An online viewer for hexahedral meshes,” Computer-Aided Design, vol. 110, pp. 24–36, 2019.
  42. C. Neuhauser, J. Wang, and R. Westermann, “Interactive focus+ context rendering for hexahedral mesh inspection,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 8, pp. 3505–3518, 2021.
  43. L. Si and G. Chen, “A visualization system for hexahedral mesh quality study,” in 2023 IEEE Visualization and Visual Analytics (VIS), 2023, pp. 86–90.
  44. M. Bracci, M. Tarini, N. Pietroni, M. Livesu, and P. Cignoni, “Hexalab.net: An online viewer for hexahedral meshes,” Computer-Aided Design, vol. 110, pp. 24–36, 2019.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets