Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Block-MDS QC-LDPC Codes for Information Reconciliation in Key Distribution (2403.00192v1)

Published 29 Feb 2024 in cs.IT and math.IT

Abstract: Quantum key distribution (QKD) is a popular protocol that provides information theoretically secure keys to multiple parties. Two important post-processing steps of QKD are 1) the information reconciliation (IR) step, where parties reconcile mismatches in generated keys through classical communication, and 2) the privacy amplification (PA) step, where parties distill their common key into a new secure key that the adversary has little to no information about. In general, these two steps have been abstracted as two distinct problems. In this work, we consider a new technique of performing the IR and PA steps jointly through sampling that relaxes the requirement on the IR step, allowing for more success in key creation. We provide a novel LDPC code construction known as Block-MDS QC-LDPC codes that can utilize the relaxed requirement by creating LDPC codes with pre-defined sub-matrices of full-rank. We demonstrate through simulations that our technique of sampling can provide notable gains in successfully creating secret keys.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. C. Wang and A. Rahman, “Quantum-Enabled 6G Wireless Networks: Opportunities and Challenges,” IEEE Wireless Communications, vol. 29, no. 1, pp. 58–69, 2022.
  2. V.-L. Nguyen, P.-C. Lin, B.-C. Cheng, R.-H. Hwang, and Y.-D. Lin, “Security and Privacy for 6G: A Survey on Prospective Technologies and Challenges,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2384–2428, 2021.
  3. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, et al., “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New Journal of Physics, vol. 17, no. 2, p. 022002, 2015.
  4. L. Dolecek and E. Soljanin, “Qkd based on time-entangled photons and its key-rate promise,” IEEE BITS Information Theory Magazine, vol. 2, no. 3, pp. 39–48, 2022.
  5. K. Brádler, M. Mirhosseini, R. Fickler, A. Broadbent, and R. Boyd, “Finite-key security analysis for multilevel quantum key distribution,” New Journal of Physics, vol. 18, no. 7, p. 073030, 2016.
  6. Q. Zhuang, Z. Zhang, J. Dove, F. N. Wong, and J. H. Shapiro, “Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates,” Physical Review A, vol. 94, no. 1, p. 012322, 2016.
  7. Z. Zhang, C. Chen, Q. Zhuang, F. N. Wong, and J. H. Shapiro, “Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 db loss channel,” Quantum Science and Technology, vol. 3, no. 2, p. 025007, 2018.
  8. C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, “Large-alphabet encoding for higher-rate quantum key distribution,” Optics express, vol. 27, no. 13, pp. 17539–17549, 2019.
  9. C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM Journal on Computing, vol. 17, no. 2, pp. 210–229, 1988.
  10. D. Elkouss, A. Leverrier, R. Alleaume, and J. J. Boutros, “Efficient reconciliation protocol for discrete-variable quantum key distribution,” in IEEE International Symposium on Information Theory, pp. 1879–1883, 2009.
  11. R. Müller, D. Bacco, L. K. Oxenløwe, and S. Forchhammer, “Information reconciliation for high-dimensional quantum key distribution using nonbinary ldpc codes,” in International Symposium on Topics in Coding (ISTC), pp. 1–5, 2023.
  12. K.-C. Chang, X. Cheng, M. C. Sarihan, A. K. Vinod, Y. S. Lee, T. Zhong, Y.-X. Gong, Z. Xie, J. H. Shapiro, F. N. Wong, et al., “648 hilbert-space dimensionality in a biphoton frequency comb: entanglement of formation and schmidt mode decomposition,” npj Quantum Information, vol. 7, no. 1, p. 48, 2021.
  13. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Transactions on Information theory, vol. 41, no. 6, pp. 1915–1923, 1995.
  14. E. Dupraz, V. Savin, and M. Kieffer, “Density evolution for the design of non-binary low density parity check codes for slepian-wolf coding,” IEEE Transactions on Communications, vol. 63, no. 1, pp. 25–36, 2015.
  15. J. Thorpe, “Low-density parity-check (ldpc) codes constructed from protographs,” IPN progress report, vol. 42, no. 154, pp. 42–154, 2003.
  16. L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-Binary Protograph-Based LDPC Codes: Enumerators, Analysis, and Designs,” IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 3913–3941, 2014.
  17. M. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE Transactions on Information Theory, vol. 50, no. 8, pp. 1788–1793, 2004.
  18. R. Smarandache and P. O. Vontobel, “Quasi-Cyclic LDPC Codes: Influence of Proto- and Tanner-Graph Structure on Minimum Hamming Distance Upper Bounds,” IEEE Transactions on Information Theory, vol. 58, no. 2, pp. 585–607, 2012.
  19. J. R. Silvester, “Determinants of Block Matrices,” Mathematical Gazette, vol. 84, no. 501, pp. 460–467, 2000.
  20. Springer, 2020.
  21. A. W. Ingleton, “The rank of circulant matrices,” Journal of the London Mathematical Society, vol. 1, no. 4, pp. 445–460, 1956.
  22. T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and T. Johansson, “A reaction attack on the qc-ldpc mceliece cryptosystem,” in Post-Quantum Cryptography International Workshop, pp. 51–68, Springer, 2017.
  23. A. Klinger, “The vandermonde matrix,” The American Mathematical Monthly, vol. 74, no. 5, pp. 571–574, 1967.
Citations (1)

Summary

We haven't generated a summary for this paper yet.