Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Road to Next-Generation Multiple Access: A 50-Year Tutorial Review (2403.00189v2)

Published 29 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: The evolution of wireless communications has been significantly influenced by remarkable advancements in multiple access (MA) technologies over the past five decades, shaping the landscape of modern connectivity. Within this context, a comprehensive tutorial review is presented, focusing on representative MA techniques developed over the past 50 years. The following areas are explored: i) The foundational principles and information-theoretic capacity limits of power-domain non-orthogonal multiple access (NOMA) are characterized, along with its extension to multiple-input multiple-output (MIMO)-NOMA. ii) Several MA transmission schemes exploiting the spatial domain are investigated, encompassing both conventional space-division multiple access (SDMA)/MIMO-NOMA systems and near-field MA systems utilizing spherical-wave propagation models. iii) The application of NOMA to integrated sensing and communications (ISAC) systems is studied. This includes an introduction to typical NOMA-based downlink/uplink ISAC frameworks, followed by an evaluation of their performance limits using a mutual information (MI)-based analytical framework. iv) Major issues and research opportunities associated with the integration of MA with other emerging technologies are identified to facilitate MA in next-generation networks, i.e., next-generation multiple access (NGMA). Throughout the paper, promising directions are highlighted to inspire future research endeavors in the realm of MA and NGMA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (296)
  1. S. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Commun. Surv. Tut., vol. 19, no. 2, pp. 721–742, 2ed Quart. 2016.
  2. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor, “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191, Feb. 2017.
  3. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181–2195, Oct. 2017.
  4. Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Nonorthogonal multiple access for 5G and beyond,” Proc. IEEE, vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
  5. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019.
  6. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci., vol. 64, pp. 1–74, Nov. 2021.
  7. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May./Jun. 2019.
  8. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surv. Tut., vol. 25, no. 2, pp. 905–974, 2ed Quart. 2023.
  9. Y. Liu, W. Yi, Z. Ding, X. Liu, O. A. Dobre, and N. Al-Dhahir, “Developing NOMA to next generation multiple access: Future vision and research opportunities,” IEEE Wireless Commun., vol. 29, no. 6, pp. 120–127, Dec. 2022.
  10. Y. Liu, S. Zhang, X. Mu, Z. Ding, R. Schober, N. Al-Dhahir, E. Hossain, and X. Shen, “Evolution of NOMA toward next generation multiple access (NGMA) for 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037–1071, Apr. 2022.
  11. G. Marconi and M. W. T. C. Limited, “Improvements in apparatus for wireless telegraphy,” Apr. 1900, GB Patent 7,777.
  12. S. J. Campanella and J. V. Harrington, “Satellite communications networks,” Proc. IEEE, vol. 72, no. 11, pp. 1506–1519, Nov. 1984.
  13. R. Scholtz, “The origins of spread-spectrum communications,” IEEE Trans. Commun., vol. 30, no. 5, pp. 822–854, May 1982.
  14. R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Syst. Tech. J., vol. 45, no. 10, pp. 1775–1796, Dec. 1966.
  15. M. Zimmerman and A. Kirsch, “The AN/GSC-10 (KATHRYN) variable rate data modem for HF radio,” IEEE Trans. Commun. Tech., vol. 15, no. 2, pp. 197–204, Apr. 1967.
  16. S. B. Weinstein, “The history of orthogonal frequency-division multiplexing [History of Communications],” IEEE Commun. Mag., vol. 47, no. 11, pp. 26–35, Nov. 2009.
  17. K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, and C. E. Wheatley, “On the capacity of a cellular CDMA system,” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 303–312, May 1991.
  18. C. E. Shannon, “Two-way communication channels,” in Proc. 4th Berkeley Symp. Math. Statist. Probab., vol. 1, 1961, pp. 611–644.
  19. R. Ahlswede, “Multi-way communication channels,” in Proc. 2nd. Int. Symp. Inf. Theory (Tsahkadsor, Armenian SSR), 1971, pp. 23–52.
  20. T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 2–14, Jan. 1972.
  21. P. Bergmans, “Random coding theorem for broadcast channels with degraded components,” IEEE Trans. Inf. Theory, vol. 19, no. 2, pp. 197–207, Mar. 1973.
  22. ——, “A simple converse for broadcast channels with additive white Gaussian noise (corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 2, pp. 279–280, Mar. 1974.
  23. R. G. Gallager, “Capacity and coding for degraded broadcast channels,” Probl. Peredachi Inf., vol. 10, no. 3, pp. 3–14, 1974.
  24. J. H. Winters, “Optimum combining in digital mobile radio with cochannel interference,” IEEE Trans. Veh. Technol., vol. 33, no. 3, pp. 144–155, Aug. 1984.
  25. R. S. Cheng and S. Verdú, “Gaussian multiaccess channels with ISI: Capacity region and multiuser water-filling,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 773–785, May 1993.
  26. S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.
  27. H. Weingarten, Y. Steinberg, and S. S. Shamai, “The capacity region of the Gaussian multiple-input multiple-output broadcast channel,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006.
  28. M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tut., vol. 18, no. 3, pp. 1617–1655, 3rd Quart. 2016.
  29. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proc. IEEE 77th Veh. Technol. Conf. (VTC Spring), 2013, pp. 1–5.
  30. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE Commun. Surv. Tut., vol. 20, no. 3, pp. 2294–2323, 3rd Quart. 2018.
  31. Z. Wu, K. Lu, C. Jiang, and X. Shao, “Comprehensive study and comparison on 5G NOMA schemes,” IEEE Access, vol. 6, pp. 18 511–18 519, 2018.
  32. I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Z. Han, M. J. Piran, and D. Y. Suh, “A systematic review on NOMA variants for 5G and beyond,” IEEE Access, vol. 9, pp. 85 573–85 644, 2021.
  33. V. K. Deolia et al., “Code domain non orthogonal multiple access schemes for 5G and beyond communication networks: A review,” J. Eng. Res., vol. 10, no. 4A, pp. 132–152, 2022.
  34. Y. Liu, H. Xing, C. Pan, A. Nallanathan, M. Elkashlan, and L. Hanzo, “Multiple-antenna-assisted non-orthogonal multiple access,” IEEE Wireless Commun., vol. 25, no. 2, pp. 17–23, Apr. 2018.
  35. M. Vaezi, G. A. A. Baduge, Y. Liu, A. Arafa, F. Fang, and Z. Ding, “Interplay between NOMA and other emerging technologies: A survey,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 900–919, Dec. 2019.
  36. O. Maraqa, A. S. Rajasekaran, S. Al-Ahmadi, H. Yanikomeroglu, and S. M. Sait, “A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks,” IEEE Commun. Surv. Tut., vol. 22, no. 4, pp. 2192–2235, 4th Quart. 2020.
  37. Y. Mao, O. Dizdar, B. Clerckx, R. Schober, P. Popovski, and H. V. Poor, “Rate-splitting multiple access: Fundamentals, survey, and future research trends,” IEEE Commun. Surv. Tut., vol. 24, no. 4, pp. 2073–2126, 4th Quart. 2022.
  38. X. Mu, Z. Wang, and Y. Liu, “NOMA for integrating sensing and communications towards 6G: A multiple access perspective,” IEEE Wireless Commun., Early Access, 2023.
  39. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.
  40. A. El Gamal and T. M. Cover, “Multiple user information theory,” Proc. IEEE, vol. 68, no. 12, pp. 1466–1483, Dec. 1980.
  41. H. Liao, “A coding theorem for multiple access communications,” in Proc. IEEE Int. Symp. Inf. Theory, Asilomar, CA, 1972.
  42. ——, “Multiple access channels,” Ph.D. dissertation, University of Hawaii Honolulu, HI, USA, 1972.
  43. T. Guess and M. K. Varanasi, “Multiuser decision-feedback receivers for the general Gaussian multiple-access channel,” in Proc. Allerton Conf. Commun. Control Comput., vol. 34, 1996, pp. 190–199.
  44. E. van der Meulen, “The discrete memoryless channel with two senders and one receiver,” in Proc 2nd Int. Symp. Inf. Theory (Tsahkadsor, Armenian SSR), 1971, pp. 103–135.
  45. R. Ahlswede, “The capacity region of a channel with two senders and two receivers,” Ann. Prob., vol. 2, pp. 805–814, Oct. 1974.
  46. D. Slepian and J. K. Wolf, “A coding theorem for multiple access channels with correlated sources,” Bell Syst. Tech. J., vol. 52, no. 7, pp. 1037–1076, Sep. 1973.
  47. G. Dueck, “The strong converse to the coding theorem for the multiple–access channel,” J. Combin. Inf. Syst. Sci., vol. 6, no. 3, pp. 187–196, 1981.
  48. T. M. Cover, “Some advances in broadcast channels,” in Advances in Communication Systems.   Elsevier, 1975, vol. 4, pp. 229–260.
  49. A. Wyner, “Recent results in the Shannon theory,” IEEE Trans. Inf. Theory, vol. 20, no. 1, pp. 2–10, Jan. 1974.
  50. H. Te Sun, “The capacity region of general multiple-access channel with certain correlated sources,” Inf. Contr., vol. 40, pp. 37–60, Jan. 1979.
  51. D. N. C. Tse and S. V. Hanly, “Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 2796–2815, Nov. 1998.
  52. E. van der Meulen, “A survey of multi-way channels in information theory: 1961–1976,” IEEE Trans. Inf. Theory, vol. 23, no. 1, pp. 1–37, Jan. 1977.
  53. ——, “Recent coding theorems and converses for multi-way channels. Part II: The multiple-access channel (1976–1985),” Department Wiskunde, Katholieke Universiteit Leuven, Leuven, Belgium. 1985.
  54. K. Marton, “A coding theorem for the discrete memoryless broadcast channel,” IEEE Trans. Inf. Theory, vol. 25, no. 3, pp. 306–311, May 1979.
  55. C. E. Shannon, “A note on a partial ordering for communication channels,” Inf. Contr., vol. 1, no. 4, pp. 390–397, 1958.
  56. A. Wyner, “A theorem on the entropy of certain binary sequences and applications–II,” IEEE Trans. Inf. Theory, vol. 19, no. 6, pp. 772–777, 1973.
  57. R. Ahlswede and J. Korner, “Source coding with side information and a converse for degraded broadcast channels,” IEEE Trans. Inf. Theory, vol. 21, no. 6, pp. 629–637, Nov. 1975.
  58. F. Willems, “The maximal-error and average-error capacity region of the broadcast channel are identical: A direct proof,” Probl. Control Inf. Theory, vol. 19, no. 4, pp. 339–347, Dec. 1990.
  59. E. van der Meulen, “Recent coding theorems and converses for multi-way channels. Part I: The broadcast channel (1976–1980),” New Concepts in Multi-user Communication, no. 43, p. 15, 1981.
  60. T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2524–2530, Oct. 1998.
  61. A. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 60–70, Jan. 1978.
  62. T. Cover and A. El Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf. Theory, vol. 25, no. 5, pp. 572–584, Sep. 1979.
  63. A. J. Grant, B. Rimoldi, R. L. Urbanke, and P. A. Whiting, “Rate-splitting multiple access for discrete memoryless channels,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 873–890, Mar. 2001.
  64. I. Csiszár and J. Korner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.
  65. R. Zhang and L. Hanzo, “A unified treatment of superposition coding aided communications: Theory and practice,” IEEE Commun. Surveys Tuts., vol. 13, no. 3, pp. 503–520, 3rd Quart. 2010.
  66. S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi, “Superposition coding strategies: Design and experimental evaluation,” IEEE Trans. Wireless Commun., vol. 11, no. 7, pp. 2628–2639, Jul. 2012.
  67. X. Xiong, W. Xiang, K. Zheng, H. Shen, and X. Wei, “An open source SDR-based NOMA system for 5G networks,” IEEE Wireless Commun., vol. 22, no. 6, pp. 24–32, Dec. 2015.
  68. J. G. Andrews, “Interference cancellation for cellular systems: A contemporary overview,” IEEE Wireless Commun., vol. 12, no. 2, pp. 19–29, Apr. 2005.
  69. Q. Li, G. Li, W. Lee, M.-i. Lee, D. Mazzarese, B. Clerckx, and Z. Li, “MIMO techniques in WiMAX and LTE: A feature overview,” IEEE Commun. Mag., vol. 48, no. 5, pp. 86–92, May 2010.
  70. P. Patel and J. Holtzman, “Analysis of a simple successive interference cancellation scheme in a DS/CDMA system,” IEEE J. Sel. Areas Commun., vol. 12, no. 5, pp. 796–807, Jun. 1994.
  71. P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals Syst. Electron., 1998, pp. 295–300.
  72. E. Gelal, J. Ning, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. D. Rao, “Topology control for effective interference cancellation in multiuser MIMO networks,” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 455–468, Apr. 2012.
  73. C. Jiang, Y. Shi, Y. T. Hou, W. Lou, S. Kompella, and S. F. Midkiff, “Squeezing the most out of interference: An optimization framework for joint interference exploitation and avoidance,” in Proc. IEEE INFOCOM, 2012, pp. 424–432.
  74. C. Xu, L. Ping, P. Wang, S. Chan, and X. Lin, “Decentralized power control for random access with successive interference cancellation,” IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2387–2396, Nov. 2013.
  75. J. Lee, J. G. Andrews, and D. Hong, “Spectrum-sharing transmission capacity with interference cancellation,” IEEE Trans. Commun., vol. 61, no. 1, pp. 76–86, Jan. 2012.
  76. W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for Gaussian vector multiple-access channels,” IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 145–152, Jan. 2004.
  77. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 439–441, May 1983.
  78. N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith, “Sum power iterative water-filling for multi-antenna Gaussian broadcast channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1570–1580, 2005.
  79. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Euro. Trans. Telecomm., vol. 10, no. 6, pp. 585–595, Sep. 1999.
  80. G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, Autumn 1996.
  81. G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691–1706, Jul. 2003.
  82. P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink–downlink duality,” IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.
  83. W. Yu and J. M. Cioffi, “Sum capacity of Gaussian vector broadcast channels,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 1875–1892, Sep. 2004.
  84. A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003.
  85. S. A. Jafar, G. J. Foschini, and A. J. Goldsmith, “Phantomnet: Exploring optimal multicellular multiple antenna systems,” EURASIP J. Adv. Signal. Process., vol. 2004, pp. 1–14, May 2004.
  86. Y. Huang, C. Zhang, J. Wang, Y. Jing, L. Yang, and X. You, “Signal processing for MIMO-NOMA: Present and future challenges,” IEEE Wireless Commun., vol. 25, no. 2, pp. 32–38, Apr. 2018.
  87. F.-Y. Tian and X.-M. Chen, “Multiple-antenna techniques in nonorthogonal multiple access: A review,” Front. Inform. Technol. Electron. Eng., vol. 20, no. 12, pp. 1665–1697, Dec. 2019.
  88. M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems,” IEEE Trans. Signal Process., vol. 64, no. 1, pp. 76–88, Jan. 2016.
  89. Z. Chen, Z. Ding, P. Xu, and X. Dai, “Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1263–1266, Jun. 2016.
  90. Z. Chen, Z. Ding, X. Dai, and G. K. Karagiannidis, “On the application of quasi-degradation to MISO-NOMA downlink,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6174–6189, Dec. 2016.
  91. H. M. Al-Obiedollah, K. Cumanan, J. Thiyagalingam, A. G. Burr, Z. Ding, and O. A. Dobre, “Energy efficient beamforming design for MISO non-orthogonal multiple access systems,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4117–4131, Jun. 2019.
  92. J. Zhu, J. Wang, Y. Huang, K. Navaie, Z. Ding, and L. Yang, “On optimal beamforming design for downlink MISO NOMA systems,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3008–3020, Mar. 2020.
  93. A. Zakeri, A. Khalili, M. R. Javan, N. Mokari, and E. Jorswieck, “Robust energy-efficient resource management, SIC ordering, and beamforming design for MC MISO-NOMA enabled 6G,” IEEE Trans. Signal Process., vol. 69, pp. 2481–2498, 2021.
  94. Z. Ma, Z. Ding, P. Fan, and S. Tang, “A general framework for MIMO uplink and downlink transmissions in 5G multiple access,” in Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), 2016, pp. 1–4.
  95. Z. Chen, Z. Ding, X. Dai, and R. Schober, “Asymptotic performance analysis of GSVD-NOMA systems with a large-scale antenna array,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 575–590, Jan. 2019.
  96. A. Krishnamoorthy, Z. Ding, and R. Schober, “Precoder design and statistical power allocation for MIMO-NOMA via user-assisted simultaneous diagonalization,” IEEE Trans. Commun., vol. 69, no. 2, pp. 929–945, Feb. 2021.
  97. A. Krishnamoorthy and R. Schober, “Uplink and downlink MIMO-NOMA with simultaneous triangularization,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3381–3396, Jun. 2021.
  98. Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-orthogonal multiple access,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 537–552, Jan. 2015.
  99. Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4438–4454, Jun. 2016.
  100. M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, “On the sum rate of MIMO-NOMA and MIMO-OMA systems,” IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 534–537, Aug. 2017.
  101. ——, “Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2413–2424, Oct. 2017.
  102. Y. Liu, M. Elkashlan, Z. Ding, and G. K. Karagiannidis, “Fairness of user clustering in MIMO non-orthogonal multiple access systems,” IEEE Commun. Lett., vol. 20, no. 7, pp. 1465–1468, Jul. 2016.
  103. S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation,” IEEE Access, vol. 5, pp. 565–577, 2017.
  104. J. Cui, Z. Ding, and P. Fan, “Outage probability constrained MIMO-NOMA designs under imperfect CSI,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8239–8255, Dec. 2018.
  105. X. Sun, N. Yang, S. Yan, Z. Ding, D. W. K. Ng, C. Shen, and Z. Zhong, “Joint beamforming and power allocation in downlink NOMA multiuser MIMO networks,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5367–5381, Aug. 2018.
  106. X. Xu, Y. Liu, X. Mu, Q. Chen, and Z. Ding, “Cluster-free NOMA communications toward next generation multiple access,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2184–2200, Apr. 2023.
  107. X. Xu, Y. Liu, Q. Chen, X. Mu, and Z. Ding, “Distributed auto-learning gnn for multi-cell cluster-free NOMA communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 1243–1258, Apr. 2023.
  108. Y. Liu, Z. Qin, Y. Cai, Y. Gao, G. Y. Li, and A. Nallanathan, “UAV communications based on non-orthogonal multiple access,” IEEE Wireless Commun., vol. 26, no. 1, pp. 52–57, Feb. 2019.
  109. Y. Liu, X. Liu, X. Gao, X. Mu, X. Zhou, O. A. Dobre, and H. V. Poor, “Robotic communications for 5G and beyond: Challenges and research opportunities,” IEEE Commun. Mag., vol. 59, no. 10, pp. 92–98, Oct. 2021.
  110. M. Elbayoumi, M. Kamel, W. Hamouda, and A. Youssef, “NOMA-assisted machine-type communications in UDN: State-of-the-art and challenges,” IEEE Commun. Surv. Tut., vol. 22, no. 2, pp. 1276–1304, 2ed Quart. 2020.
  111. W. Jaafar, S. Naser, S. Muhaidat, P. C. Sofotasios, and H. Yanikomeroglu, “Multiple access in aerial networks: From orthogonal and non-orthogonal to rate-splitting,” IEEE Open J. Veh. Technol., vol. 1, pp. 372–392, 2020.
  112. X. Mu, Y. Liu, L. Guo, and J. Lin, “Non-orthogonal multiple access for air-to-ground communication,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2934–2949, May 2020.
  113. S. Pakravan, J.-Y. Chouinard, X. Li, M. Zeng, W. Hao, Q.-V. Pham, and O. A. Dobre, “Physical layer security for NOMA systems: Requirements, issues, and recommendations,” IEEE Internet Things J., vol. 10, no. 24, pp. 21 721–21 737, Dec. 2023.
  114. Y. Chen, H. Lu, L. Qin, Y. Deng, and A. Nallanathan, “When xURLLC meets NOMA: A stochastic network calculus perspective,” IEEE Commun. Mag., Early Access, 2023.
  115. C. Zhong, X. Hu, X. Chen, D. W. K. Ng, and Z. Zhang, “Spatial modulation assisted multi-antenna non-orthogonal multiple access,” IEEE Wireless Commun., vol. 25, no. 2, pp. 61–67, Apr. 2018.
  116. Z. Ding and H. V. Poor, “Design of THz-NOMA in the presence of beam misalignment,” IEEE Commun. Lett., vol. 26, no. 7, pp. 1678–1682, Jul. 2022.
  117. ——, “Joint beam management and power allocation in THz-NOMA networks,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2059–2073, Apr. 2023.
  118. Z. Ding, R. Schober, P. Fan, and H. V. Poor, “Simple semi-grant-free transmission strategies assisted by non-orthogonal multiple access,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4464–4478, Jun. 2019.
  119. Z. Ding, R. Schober, and H. V. Poor, “A new QoS-guarantee strategy for NOMA assisted semi-grant-free transmission,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7489–7503, Nov. 2021.
  120. S. S. Bawazir, P. C. Sofotasios, S. Muhaidat, Y. Al-Hammadi, and G. K. Karagiannidis, “Multiple access for visible light communications: Research challenges and future trends,” IEEE Access, vol. 6, pp. 26 167–26 174, 2018.
  121. J. Choi, “NOMA-based random access with multichannel ALOHA,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2736–2743, Dec. 2017.
  122. V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the K𝐾Kitalic_K-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425–3441, Aug. 2008.
  123. Z. Ding, “NOMA beamforming in SDMA networks: Riding on existing beams or forming new ones?” IEEE Commun. Lett., vol. 26, no. 4, pp. 868–871, Apr. 2022.
  124. Z. Ding, D. Xu, R. Schober, and H. V. Poor, “Hybrid NOMA offloading in multi-user MEC networks,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5377–5391, Jul. 2022.
  125. B. Clerckx, H. Joudeh, C. Hao, M. Dai, and B. Rassouli, “Rate splitting for MIMO wireless networks: A promising PHY-layer strategy for LTE evolution,” IEEE Commun. Mag., vol. 54, no. 5, pp. 98–105, May 2016.
  126. J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
  127. E. Björnson, C.-B. Chae, R. W. Heath Jr, T. L. Marzetta, A. Mezghani, L. Sanguinetti, F. Rusek, M. R. Castellanos, D. Jun, and Ö. T. Demir, “Towards 6G MIMO: Massive spatial multiplexing, dense arrays, and interplay between electromagnetics and processing,” arXiv preprint arXiv:2401.02844, 2024. [Online]. Available: https://arxiv.org/abs/2401.02844
  128. J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diversity on the capacity of wireless communication systems,” IEEE Trans. Commun., vol. 42, no. 234, pp. 1740–1751, Feb./Mar./Apr. 1994.
  129. B. Suard, G. Xu, H. Liu, and T. Kailath, “Uplink channel capacity of space-division-multiple-access schemes,” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1468–1476, Jul. 1998.
  130. Y. Liu, J. Xu, Z. Wang, X. Mu, and L. Hanzo, “Near-field communications: What will be different?” arXiv preprint arXiv:2303.04003, 2023. [Online]. Available: https://arxiv.org/abs/2303.04003
  131. B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951–963, Apr. 2003.
  132. M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO communications systems,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700–2712, Aug. 2005.
  133. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.
  134. A. Krishnamoorthy and R. Schober, “Downlink massive MU-MIMO with successively-regularized zero forcing precoding,” IEEE Wireless Commun. Lett., vol. 12, no. 1, pp. 114–118, Jan. 2023.
  135. ——, “Downlink MIMO-RSMA with successive null-space precoding,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9170–9185, Nov. 2022.
  136. C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication–Part I: Channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.
  137. M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711–1721, May 2007.
  138. ——, “Active antenna selection in multiuser MIMO communications,” IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1498–1510, Apr. 2007.
  139. B. R. Vojcic and W. M. Jang, “Transmitter precoding in synchronous multiuser communications,” IEEE Trans. Commun., vol. 46, no. 10, pp. 1346–1355, Oct. 1998.
  140. P. Patcharamaneepakorn, S. Armour, and A. Doufexi, “On the equivalence between SLNR and MMSE precoding schemes with single-antenna receivers,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1034–1037, Jul. 2012.
  141. A.-A. Lu, X. Gao, and C. Xiao, “Robust linear precoder design for 3D massive MIMO downlink with a posteriori channel model,” IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7274–7286, Jul. 2022.
  142. A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan. 2006.
  143. X. Li, E. Björnson, S. Zhou, and J. Wang, “Massive MIMO with multi-antenna users: When are additional user antennas beneficial?” in Proc. 23rd Int. Telecomm. Conf. (ICT), 2016, pp. 1–6.
  144. P. Patcharamaneepakorn, A. Doufexi, and S. Armour, “Equivalent expressions and performance analysis of SLNR precoding schemes: a generalisation to multi-antenna receivers,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1196–1199, Jun. 2013.
  145. S. S. Christensen, R. Agarwal, E. De Carvalho, and J. M. Cioffi, “Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799, Dec. 2008.
  146. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011.
  147. X. Zhao, S. Lu, Q. Shi, and Z.-Q. Luo, “Rethinking WMMSE: Can its complexity scale linearly with the number of BS antennas?” IEEE Trans. Signal Process., vol. 71, pp. 433–446, 2023.
  148. K. Shen and W. Yu, “Fractional programming for communication systems–Part I: Power control and beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, Mar. 2018.
  149. ——, “Fractional programming for communication systems–Part II: Uplink scheduling via matching,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2631–2644, Mar. 2018.
  150. M. Razaviyayn, “Successive convex approximation: Analysis and applications,” Ph.D. dissertation, University of Minnesota, 2014.
  151. Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.
  152. C. Xing, S. Wang, S. Chen, S. Ma, H. V. Poor, and L. Hanzo, “Matrix-monotonic optimization–Part I: Single-variable optimization,” IEEE Trans. Signal Process., vol. 69, pp. 738–754, 2020.
  153. ——, “Matrix-monotonic optimization–Part II: Multi-variable optimization,” IEEE Trans. Signal Process., vol. 69, pp. 179–194, 2020.
  154. Y.-F. Liu, T.-H. Chang, M. Hong, Z. Wu, A. M.-C. So, E. A. Jorswieck, and W. Yu, “A survey of advances in optimization methods for wireless communication system design,” arXiv preprint arXiv:2401.12025, 2024. [Online]. Available: https://arxiv.org/pdf/2401.12025.pdf
  155. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
  156. Y. Liu, Z. Wang, J. Xu, C. Ouyang, X. Mu, and R. Schober, “Near-field communications: A tutorial review,” IEEE Open J. Commun. Soc., vol. 4, pp. 1999–2049, 2023.
  157. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Aspects of favorable propagation in massive MIMO,” in Proc. 22nd Euro. Conf. Signal Process. (EUSIPCO), 2014, pp. 76–80.
  158. E. Björnson, J. Hoydis, L. Sanguinetti et al., “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Found. Trends Signal Process., vol. 11, no. 3-4, pp. 154–655, 2017.
  159. L. Liu, C. Yuen, Y. L. Guan, Y. Li, and C. Huang, “Gaussian message passing for overloaded massive MIMO-NOMA,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 210–226, Jan. 2019.
  160. K. Senel, H. V. Cheng, E. Björnson, and E. G. Larsson, “What role can NOMA play in massive MIMO?” IEEE J. Sel. Top. Signal Process., vol. 13, no. 3, pp. 597–611, Jun. 2019.
  161. Z. Ding and H. V. Poor, “Design of massive-MIMO-NOMA with limited feedback,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 629–633, May 2016.
  162. O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
  163. R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
  164. A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2017.
  165. I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, “A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,” IEEE Commun. Surv. Tut., vol. 20, no. 4, pp. 3060–3097, 4th Quart. 2018.
  166. L. Dai, B. Wang, M. Peng, and S. Chen, “Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 131–141, Jan. 2019.
  167. H. Zhang, H. Zhang, W. Liu, K. Long, J. Dong, and V. C. Leung, “Energy efficient user clustering, hybrid precoding and power optimization in terahertz MIMO-NOMA systems,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 2074–2085, Sep. 2020.
  168. W. Feng, J. Tang, N. Zhao, X. Zhang, X. Wang, K.-K. Wong, and J. A. Chambers, “Hybrid beamforming design and resource allocation for UAV-aided wireless-powered mobile edge computing networks with NOMA,” IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp. 3271–3286, Nov. 2021.
  169. Z. Wei, L. Zhao, J. Guo, D. W. K. Ng, and J. Yuan, “Multi-beam NOMA for hybrid mmWave systems,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1705–1719, Feb. 2019.
  170. L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X.-G. Xia, “Millimeter-wave NOMA with user grouping, power allocation and hybrid beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5065–5079, Nov. 2019.
  171. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.
  172. S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?” IEEE Commun. Mag., vol. 52, no. 12, pp. 110–121, Dec. 2014.
  173. Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347–360, Mar. 2000.
  174. C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-wave multipath clustering and channel modeling,” IEEE Trans. Antennas Propag., vol. 62, no. 3, pp. 1445–1455, Mar. 2013.
  175. J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3814–3827, Mar. 2014.
  176. C. Sun, X. Gao, S. Jin, M. Matthaiou, Z. Ding, and C. Xiao, “Beam division multiple access transmission for massive MIMO communications,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2170–2184, Jun. 2015.
  177. L. You, X. Gao, G. Y. Li, X.-G. Xia, and N. Ma, “BDMA for millimeter-wave/terahertz massive MIMO transmission with per-beam synchronization,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1550–1563, Jul. 2017.
  178. X. Gao, L. Dai, Z. Chen, Z. Wang, and Z. Zhang, “Near-optimal beam selection for beamspace mmWave massive MIMO systems,” IEEE Commun. Lett., vol. 20, no. 5, pp. 1054–1057, May 2016.
  179. Y. Han, S. Jin, J. Zhang, J. Zhang, and K.-K. Wong, “DFT-based hybrid beamforming multiuser systems: Rate analysis and beam selection,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 3, pp. 514–528, Jun. 2018.
  180. X. Gao, L. Dai, and A. M. Sayeed, “Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications,” IEEE Commun. Mag., vol. 56, no. 4, pp. 211–217, Apr. 2018.
  181. T.-Y. Chin, S.-F. Chang, J.-C. Wu, and C.-C. Chang, “A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2273–2282, Nov. 2010.
  182. A. F. Molisch, X. Zhang, S.-Y. Kung, and J. Zhang, “DFT-based hybrid antenna selection schemes for spatially correlated MIMO channels,” in Proc. 14th IEEE Proc. Pers., Indoor, Mobile Radio Commun., vol. 2, 2003, pp. 1119–1123.
  183. S. Suh, A. Basu, C. Schlottmann, P. E. Hasler, and J. R. Barry, “Low-power discrete fourier transform for OFDM: A programmable analog approach,” IEEE Trans. Circuits Syst., vol. 58, no. 2, pp. 290–298, Dec. 2011.
  184. B. Wang, L. Dai, Z. Wang, N. Ge, and S. Zhou, “Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2370–2382, Oct. 2017.
  185. W. Hao, G. Sun, Z. Chu, P. Xiao, Z. Zhu, S. Yang, and R. Tafazolli, “Beamforming design in SWIPT-based joint multicast-unicast mmWave massive MIMO with lens-antenna array,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1124–1128, Aug. 2019.
  186. R. Jiao and L. Dai, “On the max-min fairness of beamspace MIMO-NOMA,” IEEE Trans. Signal Process., vol. 68, pp. 4919–4932, 2020.
  187. P. Liu, Y. Li, W. Cheng, X. Gao, and W. Zhang, “Multi-beam NOMA for millimeter-wave massive MIMO with lens antenna array,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11 570–11 583, Oct. 2020.
  188. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2023.
  189. Z. Wu and L. Dai, “Multiple access for near-field communications: SDMA or LDMA?” IEEE J. Sel. Areas Commun., vol. 41, no. 6, pp. 1918–1935, Jun. 2023.
  190. Y. Liu, C. Ouyang, Z. Wang, J. Xu, X. Mu, and A. L. Swindlehurst, “Near-field communications: A comprehensive survey,” arXiv preprint arXiv:2401.05900, 2024. [Online]. Available: https://arxiv.org/abs/2401.05900
  191. B. Zhao, C. Ouyang, X. Zhang, and Y. Liu, “Modeling and analysis of near-field ISAC,” arXiv preprint arXiv:2310.10917, 2023. [Online]. Available: https://arxiv.org/abs/2310.10917
  192. Z. Wang, J. Zhang, H. Du, D. Niyato, S. Cui, B. Ai, M. Debbah, K. B. Letaief, and H. V. Poor, “A tutorial on extremely large-scale MIMO for 6G: Fundamentals, signal processing, and applications,” IEEE Commun. Surv. Tut., Early Access, 2024.
  193. H. Lu, Y. Zeng, C. You, Y. Han, J. Zhang, Z. Wang, Z. Dong, S. Jin, C.-X. Wang, T. Jiang et al., “A tutorial on near-field XL-MIMO communications towards 6G,” arXiv preprint arXiv:2310.11044, 2023. [Online]. Available: https://arxiv.org/abs/2310.11044
  194. D. A. Miller, “Communicating with waves between volumes: Evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt., vol. 39, no. 11, pp. 1681–1699, Apr. 2000.
  195. J. Zuo, X. Mu, and Y. Liu, “Non-orthogonal multiple access for near-field communications,” arXiv preprint arXiv:2304.13185, 2023. [Online]. Available: https://arxiv.org/abs/2304.13185
  196. Z. Ding, R. Schober, and H. V. Poor, “NOMA-based coexistence of near-field and far-field massive MIMO communications,” IEEE Wireless Commun. Lett., vol. 12, no. 8, pp. 1429–1433, Aug. 2023.
  197. Z. Ding, “Resolution of near-field beamforming and its impact on NOMA,” IEEE Wireless Commun. Lett., vol. 13, no. 2, pp. 456–460, Feb. 2024.
  198. Z. Ding and H. V. Poor, “Utilizing imperfect resolution of near-field beamforming: A hybrid-NOMA perspective,” arXiv preprint arXiv:2311.02451, 2023. [Online]. Available: https://arxiv.org/pdf/2311.02451.pdf
  199. Z. Ding, R. Schober, and H. V. Poor, “Design of downlink hybrid NOMA transmission,” arXiv preprint arXiv:2401.16965, 2024. [Online]. Available: https://arxiv.org/abs/2401.16965
  200. C. Ouyang, Y. Liu, X. Zhang, and L. Hanzo, “Near-field communications: A degree-of-freedom perspective,” arXiv preprint arXiv:2308.00362, 2023. [Online]. Available: https://arxiv.org/abs/2308.00362
  201. J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, “Electromagnetic information theory: Fundamentals, modeling, applications, and open problems,” IEEE Wireless Commun., Early Access, 2024.
  202. Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges,” IEEE Netw., vol. 35, no. 5, pp. 158–167, Sep./Oct. 2021.
  203. F. Liu, L. Zheng, Y. Cui, C. Masouros, A. P. Petropulu, H. Griffiths, and Y. C. Eldar, “Seventy years of radar and communications: The road from separation to integration,” IEEE Signal Process. Mag., vol. 40, no. 5, pp. 106–121, Jul. 2023.
  204. F. Dong, F. Liu, Y. Cui, S. Lu, and Y. Li, “Sensing as a service in 6G perceptive mobile networks: Architecture, advances, and the road ahead,” IEEE Netw., Early Access, 2024.
  205. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, Jun. 2020.
  206. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1295–1315, Nov. 2021.
  207. J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and J. Yuan, “Enabling joint communication and radar sensing in mobile networks—A survey,” IEEE Commun. Surv. Tut., vol. 24, no. 1, pp. 306–345, 1st Quart. 2022.
  208. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  209. S. Lu, F. Liu, Y. Li, K. Zhang, H. Huang, J. Zou, X. Li, Y. Dong, F. Dong, J. Zhu et al., “Integrated sensing and communications: Recent advances and ten open challenges,” IEEE Internet Things J., Early Access, 2023.
  210. M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, and R. W. Heath, “Framework for a perceptive mobile network using joint communication and radar sensing,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 1926–1941, Jun. 2020.
  211. Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag., vol. 53, no. 5, pp. 128–137, May 2015.
  212. Z. Wang, Y. Liu, X. Mu, Z. Ding, and O. A. Dobre, “NOMA empowered integrated sensing and communication,” IEEE Commun. Lett., vol. 26, no. 3, pp. 677–681, Mar. 2022.
  213. X. Mu, Y. Liu, L. Guo, J. Lin, and L. Hanzo, “NOMA-aided joint radar and multicast-unicast communication systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1978–1992, Jun. 2022.
  214. Z. Yang, D. Li, N. Zhao, Z. Wu, Y. Li, and D. Niyato, “Secure precoding optimization for NOMA-aided integrated sensing and communication,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8370–8382, Dec. 2022.
  215. J. Zuo, Y. Liu, C. Zhu, Y. Zou, D. Zhang, and N. Al-Dhahir, “Exploiting NOMA and RIS in integrated sensing and communication,” IEEE Trans. Veh. Technol., vol. 72, no. 10, pp. 12 941–12 955, Oct. 2023.
  216. W. Lyu, Y. Xiu, X. Li, S. Yang, P. L. Yeoh, Y. Li, and Z. Zhang, “Hybrid NOMA assisted integrated sensing and communication via RIS,” IEEE Trans. Veh. Technol., Early Access, 2023.
  217. N. Xue, X. Mu, Y. Liu, and Y. Chen, “NOMA assisted full space STAR-RIS-ISAC,” IEEE Trans. Wireless Commun., Early Access, 2024.
  218. H. Hua, J. Xu, and T. X. Han, “Optimal transmit beamforming for integrated sensing and communication,” IEEE Trans. Veh. Technol., vol. 72, no. 8, pp. 10 588–10 603, Aug. 2023.
  219. Z. Wang, Y. Liu, X. Mu, and Z. Ding, “NOMA inspired interference cancellation for integrated sensing and communication,” in Proc. IEEE Int. Commun. Conf. (ICC), 2022, pp. 3154–3159.
  220. Z. Wang, X. Mu, Y. Liu, and Z. Ding, “Exploiting sensing signal in ISAC: A NOMA inspired scheme,” arXiv preprint arXiv:2201.04547, 2022. [Online]. Available: https://arxiv.org/abs/2201.04547
  221. C. Ouyang, Y. Liu, and H. Yang, “Revealing the impact of SIC in NOMA-ISAC,” IEEE Wireless Commun. Lett., vol. 12, no. 10, pp. 1707–1711, Oct. 2023.
  222. A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds on performance of radar and communications co-existence,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 464–474, Jan. 2015.
  223. C. Ouyang, Y. Liu, and H. Yang, “On the performance of uplink ISAC systems,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1769–1773, Aug. 2022.
  224. ——, “Performance of downlink and uplink integrated sensing and communications (ISAC) systems,” IEEE Wireless Commun. Lett., vol. 11, no. 9, pp. 1850–1854, Sep. 2022.
  225. C. Zhang, W. Yi, Y. Liu, and L. Hanzo, “Semi-integrated-sensing-and-communication (semi-ISaC): From OMA to NOMA,” IEEE Trans. Commun., vol. 71, no. 4, pp. 1878–1893, Apr. 2023.
  226. Y. Dong, F. Liu, and Y. Xiong, “Joint receiver design for integrated sensing and communications,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1854–1858, Jul. 2023.
  227. C. Ouyang, Y. Liu, H. Yang, and N. Al-Dhahir, “Integrated sensing and communications: A mutual information-based framework,” IEEE Commun. Mag., vol. 61, no. 5, pp. 26–32, May 2023.
  228. Y. Yang and R. S. Blum, “MIMO radar waveform design based on mutual information and minimum mean-square error estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 1, pp. 330–343, Jan. 2007.
  229. J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007.
  230. M. Ahmadipour, M. Kobayashi, M. Wigger, and G. Caire, “An information-theoretic approach to joint sensing and communication,” IEEE Trans. Inf. Theory, vol. 70, no. 2, pp. 1124–1146, Feb. 2024.
  231. A. M. Tulino, G. Caire, S. Verdú, and S. Shamai, “Support recovery with sparsely sampled free random matrices,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4243–4271, Jul. 2013.
  232. F. Dong, F. Liu, S. Lu, and Y. Xiong, “Rethinking estimation rate for wireless sensing: A rate-distortion perspective,” IEEE Trans. Veh. Technol., vol. 72, no. 12, pp. 16 876–16 881, Dec. 2023.
  233. F. Liu, Y. Xiong, K. Wan, T. X. Han, and G. Caire, “Deterministic-random tradeoff of integrated sensing and communications in Gaussian channels: A rate-distortion perspective,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2023, pp. 2326–2331.
  234. Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, and G. Caire, “On the fundamental tradeoff of integrated sensing and communications under Gaussian channels,” IEEE Trans. Inf. Theory, vol. 69, no. 9, pp. 5723–5751, Sep. 2023.
  235. B. Tang, J. Tang, and Y. Peng, “MIMO radar waveform design in colored noise based on information theory,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4684–4697, Sep. 2010.
  236. B. Tang and J. Li, “Spectrally constrained MIMO radar waveform design based on mutual information,” IEEE Trans. Signal Process., vol. 67, no. 3, pp. 821–834, Feb. 2019.
  237. B. Tang, J. Liu, H. Wang, and Y. Hu, “Constrained radar waveform design for range profiling,” IEEE Trans. Signal Process., vol. 69, pp. 1924–1937, 2021.
  238. J. Li, G. Zhou, T. Gong, and N. Liu, “A framework for mutual information-based MIMO integrated sensing and communication beamforming design,” IEEE Trans. Veh. Technol., Early Access, 2024.
  239. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar. 1986.
  240. J. Li and P. Stoica, “An adaptive filtering approach to spectral estimation and SAR imaging,” IEEE Trans. Signal Process., vol. 44, no. 6, pp. 1469–1484, Jun. 1996.
  241. A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, Jan. 2008.
  242. C. Ouyang, Y. Liu, and X. Zhang, “Performance analysis of downlink NOMA-ISAC,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2023, pp. 1–6.
  243. ——, “Revealing the impact of beamforming in ISAC,” IEEE Wireless Commun. Lett., vol. 13, no. 2, pp. 362–366, Feb. 2024.
  244. R. Zhang and S. Cui, “Cooperative interference management with MISO beamforming,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5450–5458, Oct. 2010.
  245. B. Zhao, C. Ouyang, X. Zhang, and Y. Liu, “Performance analysis for near-field ISAC: A holographic MIMO design,” arXiv preprint arXiv:2401.14129, 2024. [Online]. Available: https://arxiv.org/abs/2401.14129
  246. ——, “Performance analysis of near-field ISAC based on an accurate channel model,” in Proc. IEEE Int. Commun. Conf. (ICC), 2024, pp. 1–6.
  247. B. Zhao, C. Ouyang, J. Xu, X. Zhang, and Y. Liu, “Near-field ISAC: Performance analysis and rate region characterization,” in Proc. IEEE Sensor Array Multichannel Signal Process. Workshop (SAM), 2024, pp. 1–4.
  248. B. Zhao, C. Ouyang, X. Zhang, and Y. Liu, “A cluster-based NOMA framework for integrated sensing and communications,” in Proc. IEEE Int. Commun. Conf. (ICC), 2024, pp. 1–6.
  249. C. Ouyang, Y. Liu, and H. Yang, “MIMO-ISAC: Performance analysis and rate region characterization,” IEEE Wireless Commun. Lett., vol. 12, no. 4, pp. 669–673, Apr. 2023.
  250. B. Zhao, C. Ouyang, X. Zhang, and Y. Liu, “Downlink and uplink NOMA-ISAC with signal alignment,” arXiv preprint arXiv:2308.16352, 2023. [Online]. Available: https://arxiv.org/abs/2308.16352
  251. ——, “Performance of MIMO-NOMA-ISAC based on signal alignment,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2024, pp. 1–6.
  252. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Commun. Surv. Tut., vol. 19, no. 4, pp. 2322–2358, 4th Quart. 2017.
  253. K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–2035, Mar. 2020.
  254. Q. Qi, X. Chen, C. Zhong, and Z. Zhang, “Integrated sensing, computation and communication in B5G cellular internet of things,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 332–344, Jan. 2021.
  255. Z. Wang, X. Mu, Y. Liu, X. Xu, and P. Zhang, “NOMA-aided joint communication, sensing, and multi-tier computing systems,” IEEE J. Sel. Areas Commun., vol. 41, no. 3, pp. 574–588, Mar. 2023.
  256. S.-W. Jeon, C.-Y. Wang, and M. Gastpar, “Computation over Gaussian networks with orthogonal components,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7841–7861, Dec. 2014.
  257. F. Wu, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, “Computation over wide-band multi-access channels: Achievable rates through sub-function allocation,” IEEE Trans. Wireless Commun., vol. 18, no. 7, pp. 3713–3725, Jul. 2019.
  258. W. Tong and G. Y. Li, “Nine challenges in artificial intelligence and wireless communications for 6G,” IEEE Wireless Commun., vol. 29, no. 4, pp. 140–145, Aug. 2022.
  259. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 5–41, Jan. 2023.
  260. L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1394–1398, Jul. 2022.
  261. W. Zhang, K. Bai, S. Zeadally, H. Zhang, H. Shao, H. Ma, and V. C. Leung, “DeepMA: End-to-end deep multiple access for wireless image transmission in semantic communication,” IEEE Trans. Cogn. Commun. Netw., Early Access, 2023.
  262. H. Xie, Z. Qin, and G. Y. Li, “Task-oriented multi-user semantic communications for VQA,” IEEE Wireless Commun. Lett., vol. 11, no. 3, pp. 553–557, Mar. 2022.
  263. H. Xie, Z. Qin, X. Tao, and K. B. Letaief, “Task-oriented multi-user semantic communications,” IEEE J. Sel. Areas Commun., vol. 40, no. 9, pp. 2584–2597, Sep. 2022.
  264. W. Li, H. Liang, C. Dong, X. Xu, P. Zhang, and K. Liu, “Non-orthogonal multiple access enhanced multi-user semantic communication,” IEEE Trans. Cogn. Commun. Netw., vol. 9, no. 6, pp. 1438–1453, Dec. 2023.
  265. X. Mu, Y. Liu, L. Guo, and N. Al-Dhahir, “Heterogeneous semantic and bit communications: A semi-NOMA scheme,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 155–169, Jan. 2023.
  266. X. Mu and Y. Liu, “Exploiting semantic communication for non-orthogonal multiple access,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2563–2576, Aug. 2023.
  267. H. Zhang, F. Fang, J. Cheng, K. Long, W. Wang, and V. C. Leung, “Energy-efficient resource allocation in NOMA heterogeneous networks,” IEEE Wireless Commun., vol. 25, no. 2, pp. 48–53, Apr. 2018.
  268. P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view,” IEEE Access, vol. 6, pp. 55 765–55 779, 2018.
  269. Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE Commun. Surv. Tut., vol. 23, no. 3, pp. 1546–1577, 3rd Quart. 2021.
  270. X. Mu, J. Xu, Y. Liu, and L. Hanzo, “Reconfigurable intelligent surface-aided near-field communications for 6G: Opportunities and challenges,” IEEE Veh. Technol. Mag., Early Access 2024.
  271. Y. Liu, X. Mu, X. Liu, M. Di Renzo, Z. Ding, and R. Schober, “Reconfigurable intelligent surface-aided multi-user networks: Interplay between NOMA and RIS,” IEEE Wireless Commun., vol. 29, no. 2, pp. 169–176, Apr. 2022.
  272. Z. Ding, L. Lv, F. Fang, O. A. Dobre, G. K. Karagiannidis, N. Al-Dhahir, R. Schober, and H. V. Poor, “A state-of-the-art survey on reconfigurable intelligent surface-assisted non-orthogonal multiple access networks,” Proc. IEEE, vol. 110, no. 9, pp. 1358–1379, Sep. 2022.
  273. J. Xu, Y. Liu, X. Mu, and O. A. Dobre, “STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces,” IEEE Commun. Lett., vol. 25, no. 9, pp. 3134–3138, Sep. 2021.
  274. Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo, “STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces,” IEEE Wireless Commun., vol. 28, no. 6, pp. 102–109, Dec. 2021.
  275. M. Ahmed, A. Wahid, S. S. Laique, W. U. Khan, A. Ihsan, F. Xu, S. Chatzinotas, and Z. Han, “A survey on STAR-RIS: Use cases, recent advances, and future research challenges,” IEEE Internet Things J., vol. 10, no. 16, pp. 14 689–14 711, Aug. 2023.
  276. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. De Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  277. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science, vol. 305, no. 5685, pp. 788–792, Aug. 2004.
  278. D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Applied, vol. 8, no. 5, pp. 1–16, Nov. 2017.
  279. J. Wang, Y. Li, Z. H. Jiang, T. Shi, M.-C. Tang, Z. Zhou, Z. N. Chen, and C.-W. Qiu, “Metantenna: When metasurface meets antenna again,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1332–1347, Mar. 2020.
  280. R. Deng, B. Di, H. Zhang, D. Niyato, Z. Han, H. V. Poor, and L. Song, “Reconfigurable holographic surfaces for future wireless communications,” IEEE Wireless Commun., vol. 28, no. 6, pp. 126–131, Dec. 2021.
  281. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun., vol. 28, no. 2, pp. 106–113, Apr. 2021.
  282. K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1950–1962, Mar. 2021.
  283. X. Xu, Y. Liu, X. Mu, Q. Chen, H. Jiang, and Z. Ding, “Artificial intelligence enabled NOMA toward next generation multiple access,” IEEE Wireless Commun., vol. 30, no. 1, pp. 86–94, Feb. 2023.
  284. N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, “Applications of deep reinforcement learning in communications and networking: A survey,” IEEE Commun. Surv. Tut., vol. 21, no. 4, pp. 3133–3174, 4th Quart. 2019.
  285. W. Ahsan, W. Yi, Z. Qin, Y. Liu, and A. Nallanathan, “Resource allocation in uplink NOMA-IoT networks: A reinforcement-learning approach,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5083–5098, Aug. 2021.
  286. C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel assignment for NOMA with deep reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 37, no. 10, pp. 2200–2210, Oct. 2019.
  287. W. Ahsan, W. Yi, Y. Liu, and A. Nallanathan, “A reliable reinforcement learning for resource allocation in uplink NOMA-URLLC networks,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 5989–6002, Aug. 2022.
  288. G. Gui, H. Huang, Y. Song, and H. Sari, “Deep learning for an effective nonorthogonal multiple access scheme,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8440–8450, Sep. 2018.
  289. L. Jiang, X. Li, N. Ye, and A. Wang, “Deep learning-aided constellation design for downlink NOMA,” in Proc. 15th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC).   IEEE, 2019, pp. 1879–1883.
  290. A. Emir, F. Kara, H. Kaya, and H. Yanikomeroglu, “Deep learning empowered semi-blind joint detection in cooperative NOMA,” IEEE Access, vol. 9, pp. 61 832–61 852, 2021.
  291. N. Yang, H. Zhang, K. Long, H.-Y. Hsieh, and J. Liu, “Deep neural network for resource management in NOMA networks,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 876–886, Jan. 2020.
  292. S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020.
  293. M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated learning over wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 269–283, Jan. 2021.
  294. W. Ni, Y. Liu, Y. C. Eldar, Z. Yang, and H. Tian, “STAR-RIS integrated nonorthogonal multiple access and over-the-air federated learning: Framework, analysis, and optimization,” IEEE Internet Things J., vol. 9, no. 18, pp. 17 136–17 156, Sep. 2022.
  295. W. Ni, Y. Liu, Z. Yang, H. Tian, and X. Shen, “Integrating over-the-air federated learning and non-orthogonal multiple access: What role can RIS play?” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 083–10 099, Dec. 2022.
  296. J. Han, W. Ni, and L. Li, “Semi-federated learning for connected intelligence with computing-heterogeneous devices,” IEEE Internet Things J., Early Access, 2024.
Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com