Learning to walk in confined spaces using 3D representation (2403.00187v1)
Abstract: Legged robots have the potential to traverse complex terrain and access confined spaces beyond the reach of traditional platforms thanks to their ability to carefully select footholds and flexibly adapt their body posture while walking. However, robust deployment in real-world applications is still an open challenge. In this paper, we present a method for legged locomotion control using reinforcement learning and 3D volumetric representations to enable robust and versatile locomotion in confined and unstructured environments. By employing a two-layer hierarchical policy structure, we exploit the capabilities of a highly robust low-level policy to follow 6D commands and a high-level policy to enable three-dimensional spatial awareness for navigating under overhanging obstacles. Our study includes the development of a procedural terrain generator to create diverse training environments. We present a series of experimental evaluations in both simulation and real-world settings, demonstrating the effectiveness of our approach in controlling a quadruped robot in confined, rough terrain. By achieving this, our work extends the applicability of legged robots to a broader range of scenarios.
- J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science Robotics, vol. 5, no. 47, 2020.
- T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abk2822
- P. Arm, G. Waibel, J. Preisig, T. Tuna, R. Zhou, V. Bickel, G. Ligeza, T. Miki, F. Kehl, H. Kolvenbach et al., “Scientific exploration of challenging planetary analog environments with a team of legged robots,” Science robotics, vol. 8, no. 80, p. eade9548, 2023.
- M. Tranzatto, M. Dharmadhikari, L. Bernreiter, M. Camurri, S. Khattak, F. Mascarich, P. Pfreundschuh, D. Wisth, S. Zimmermann, M. Kulkarni, V. Reijgwart, B. Casseau, T. Homberger, P. De Petris, L. Ott, W. Tubby, G. Waibel, H. Nguyen, C. Cadena, R. Buchanan, L. Wellhausen, N. Khedekar, O. Andersson, L. Zhang, T. Miki, T. Dang, M. Mattamala, M. Montenegro, K. Meyer, X. Wu, A. Briod, M. Mueller, M. Fallon, R. Siegwart, M. Hutter, and K. Alexis, “Team CERBERUS wins the DARPA subterranean challenge: Technical overview and lessons learned,” Jul. 2022.
- M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bernreiter, M. Kulkarni, F. Mascarich, O. Andersson, S. Khattak, M. Hutter, R. Siegwart, and K. Alexis, “CERBERUS in the DARPA subterranean challenge,” Sci Robot, vol. 7, no. 66, p. eabp9742, May 2022.
- A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pailevanian, S.-K. Kim, K. Otsu, J. Burdick, and A.-A. Agha-mohammadi, “Autonomous spot: Long-Range autonomous exploration of extreme environments with legged locomotion,” Oct. 2020.
- N. Kottege, J. Williams, B. Tidd, F. Talbot, R. Steindl, M. Cox, D. Frousheger, T. Hines, A. Pitt, B. Tam, B. Wood, L. Hanson, K. Lo Surdo, T. Molnar, M. Wildie, K. Stepanas, G. Catt, L. Tychsen-Smith, D. Penfold, L. Overs, M. Ramezani, K. Khosoussi, F. Kendoul, G. Wagner, D. Palmer, J. Manderson, C. Medek, M. O’Brien, S. Chen, and R. C. Arkin, “Heterogeneous robot teams with unified perception and autonomy: How team CSIRO data61 tied for the top score at the DARPA subterranean challenge,” Feb. 2023.
- L. Han, Q. Zhu, J. Sheng, C. Zhang, T. Li, Y. Zhang, H. Zhang, Y. Liu, C. Zhou, R. Zhao, J. Li, Y. Zhang, R. Wang, W. Chi, X. Li, Y. Zhu, L. Xiang, X. Teng, and Z. Zhang, “Lifelike agility and play on quadrupedal robots using reinforcement learning and generative pre-trained models,” Aug. 2023.
- Z. Zhuang, Z. Fu, J. Wang, C. G. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao, “Robot parkour learning,” in 7th Annual Conference on Robot Learning, 2023.
- D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour: Learning agile navigation for quadrupedal robots,” arXiv preprint arXiv:2306.14874, 2023.
- Y. Kim, H. Oh, J. Lee, J. Choi, G. Ji, M. Jung, D. Youm, and J. Hwangbo, “Not only rewards but also constraints: Applications on legged robot locomotion,” Aug. 2023.
- R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kottege, and M. Hutter, “Perceptive whole-body planning for multilegged robots in confined spaces,” Journal of Field Robotics, vol. 38, no. 1, pp. 68–84, 2021.
- R. Buchanan, T. Bandyopadhyay, M. Bjelonic, L. Wellhausen, M. Hutter, and N. Kottege, “Walking posture adaptation for legged robot navigation in confined spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2148–2155, 2019.
- R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning vision-guided quadrupedal locomotion end-to-end with cross-modal transformers,” in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=nhnJ3oo6AB
- W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan, and T. Zhang, “Visual-Locomotion: Learning to walk on complex terrains with vision,” in Proceedings of the 5th Conference on Robot Learning, ser. Proceedings of Machine Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol. 164. PMLR, 2022, pp. 1291–1302.
- A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion in challenging terrains using egocentric vision,” Sep. 2022.
- R. Yang, G. Yang, and X. Wang, “Neural volumetric memory for visual locomotion control,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1430–1440.
- M. Zucker, J. A. Bagnell, C. G. Atkeson, and J. Kuffner, “An optimization approach to rough terrain locomotion,” in 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 3589–3595.
- P. D. Neuhaus, J. E. Pratt, and M. J. Johnson, “Comprehensive summary of the institute for human and machine cognition’s experience with LittleDog,” The International Journal of Robotics Research, vol. 30, no. 2, pp. 216–235, 2011.
- P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping for mobile robots with uncertain localization,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3019–3026, 2018.
- T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and M. Hutter, “Elevation mapping for locomotion and navigation using gpu,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 2273–2280.
- G. Erni, J. Frey, T. Miki, M. Mattamala, and M. Hutter, “Mem: Multi-modal elevation mapping for robotics and learning,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 11 011–11 018.
- J. Z. Kolter, Y. Kim, and A. Y. Ng, “Stereo vision and terrain modeling for quadruped robots,” in 2009 IEEE International Conference on Robotics and Automation. IEEE, 2009, pp. 1557–1564.
- I. Havoutis, J. Ortiz, S. Bazeille, V. Barasuol, C. Semini, and D. G. Caldwell, “Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ),” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 6052–6057.
- D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and S. Kim, “Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 2464–2470.
- F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter, “Perceptive locomotion in rough terrain–online foothold optimization,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5370–5376, 2020.
- F. Jenelten, R. Grandia, F. Farshidian, and others, “TAMOLS: Terrain-aware motion optimization for legged systems,” IEEE Transactions on, 2022.
- R. Grandia, F. Jenelten, S. Yang, and others, “Perceptive locomotion through nonlinear Model-Predictive control,” IEEE Transactions, 2023.
- J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped robots,” in Robotics: Science and Systems, 2018.
- J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Sci Robot, vol. 4, no. 26, Jan. 2019.
- X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine, “Learning agile robotic locomotion skills by imitating animals,” Robotics: Science and Systems, 2020.
- N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes using massively parallel deep reinforcement learning,” in Conference on Robot Learning. PMLR, 2022, pp. 91–100.
- J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal stair traversal via sim-to-real reinforcement learning,” in Robotics: Science and Systems, 2021.
- S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis, “RLOC: Terrain-aware legged locomotion using reinforcement learning and optimal control,” arXiv preprint arXiv:2012.03094, 2020.
- K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu, T. Zhang, D. Freeman, K.-H. Lee, L. Lee, S. Saliceti, V. Zhuang et al., “Barkour: Benchmarking animal-level agility with quadruped robots,” arXiv preprint arXiv:2305.14654, 2023.
- D. Hoeller, N. Rudin, C. Choy, and others, “Neural scene representation for locomotion on structured terrain,” IEEE Robotics and, 2022.
- C. S. Imai, M. Zhang, Y. Zhang, M. Kierebiński, R. Yang, Y. Qin, and X. Wang, “Vision-Guided quadrupedal locomotion in the wild with Multi-Modal delay randomization,” pp. 5556–5563, Oct. 2022.
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
- H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental 3d euclidean signed distance fields for on-board mav planning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.
- A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: an efficient probabilistic 3d mapping framework based on octrees.” Auton. Robots, vol. 34, no. 3, pp. 189–206, 2013. [Online]. Available: http://dblp.uni-trier.de/db/journals/arobots/arobots34.html#HornungWBSB13
- M. Gumin, “WaveFunctionCollapse,” https://github.com/mxgmn/WaveFunctionCollapse.
- J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving contact dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 895–902, 2018. [Online]. Available: www.raisim.com
- V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and Gavriel State, “Isaac gym: High performance GPU-Based physics simulation for robot learning,” Aug. 2021.