Hamiltonian Engineering of collective XYZ spin models in an optical cavity (2402.19429v2)
Abstract: Quantum simulation using synthetic quantum systems offers unique opportunities to explore open questions in many-body physics and a path for the generation of useful entangled states. Nevertheless, so far many quantum simulators have been fundamentally limited in the models they can mimic. Here, we are able to realize an all-to-all interaction with arbitrary quadratic Hamiltonian or effectively an infinite range tunable Heisenberg XYZ model. This is accomplished by engineering cavity-mediated four-photon interactions between 700 rubidium atoms in which we harness a pair of momentum states as the effective pseudo spin or qubit degree of freedom. Using this capability we realize for the first time the so-called two-axis counter-twisting model at the mean-field level. The versatility of our platform to include more than two relevant momentum states, combined with the flexibility of the simulated Hamiltonians by adding cavity tones opens rich opportunities for quantum simulation and quantum sensing in matter-wave interferometers and other quantum sensors such as optical clocks and magnetometers
- A. Browaeys & T. Lahaye. Many-body physics with individually controlled Rydberg atoms. Nature Physics 16 no. 2, pp. 132–142 (2020).
- S. Geier et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374 no. 6571, pp. 1149–1152 (2021).
- X. Wu et al. A concise review of Rydberg atom based quantum computation and quantum simulation. Chinese Physics B 30 no. 2, p. 020 305 (2021).
- J. L. Bohn, A. M. Rey & J. Ye. Cold molecules: Progress in quantum engineering of chemistry and quantum matter. Science 357 no. 6355, pp. 1002–1010 (2017).
- J.-R. Li et al. Tunable itinerant spin dynamics with polar molecules. Nature 614 no. 7946, pp. 70–74 (2023).
- J. Zhang et al. Observation of a discrete time crystal. Nature 543 no. 7644, pp. 217–220 (2017).
- C. Monroe et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, p. 025 001 (2021).
- Cavity QED with quantum gases: new paradigms in many-body physics. Advances in Physics 70 no. 1, pp. 1–153 (2021).
- J. Choi et al. Robust Dynamic Hamiltonian Engineering of Many-Body Spin Systems. Phys. Rev. X 10, p. 031 002 (2020).
- Quantum Optics with Solid-State Color Centers, chap. 19, pp. 509–562 (John Wiley & Sons, Ltd, 2023). ISBN 9783527837427. doi:https://doi.org/10.1002/9783527837427.ch19. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527837427.ch19.
- I. Bloch, J. Dalibard & W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, pp. 885–964 (2008).
- Tools for quantum simulation with ultracold atoms in optical lattices. Nature Reviews Physics 2 no. 8, pp. 411–425 (2020).
- C. Gross & I. Bloch. Quantum simulations with ultracold atoms in optical lattices. Science 357 no. 6355, pp. 995–1001 (2017).
- L.-M. Steinert et al. Spatially Tunable Spin Interactions in Neutral Atom Arrays. Phys. Rev. Lett. 130, p. 243 001 (2023).
- M. Kitagawa & M. Ueda. Squeezed spin states. Phys. Rev. A 47, pp. 5138–5143 (1993).
- M. Shirasaki & H. A. Haus. Squeezing of pulses in a nonlinear interferometer. JOSA B 7 no. 1, pp. 30–34 (1990).
- C. A. Sackett et al. Experimental entanglement of four particles. Nature 404 no. 6775, pp. 256–259 (2000).
- Towards fault-tolerant quantum computing with trapped ions. Nature Physics 4 no. 6, pp. 463–466 (2008).
- Nonlinear atom interferometer surpasses classical precision limit. Nature 464 no. 7292, pp. 1165–1169 (2010).
- M. F. Riedel et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464 no. 7292, pp. 1170–1173 (2010).
- I. D. Leroux, M. H. Schleier-Smith & V. Vuletić. Implementation of Cavity Squeezing of a Collective Atomic Spin. Phys. Rev. Lett. 104, p. 073 602 (2010).
- I. D. Leroux, M. H. Schleier-Smith & V. Vuletić. Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock. Phys. Rev. Lett. 104, p. 250 801 (2010).
- M. A. Norcia et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361 no. 6399, pp. 259–262 (2018).
- E. J. Davis et al. Protecting spin coherence in a tunable heisenberg model. Physical Review Letters 125 no. 6, p. 060 402 (2020).
- C. Song et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365 no. 6453, pp. 574–577 (2019).
- N. Kalinin et al. Quantum-enhanced interferometer using Kerr squeezing. Nanophotonics 12 no. 14, pp. 2945–2952 (2023).
- W. Muessel et al. Twist-and-turn spin squeezing in Bose-Einstein condensates. Phys. Rev. A 92, p. 023 603 (2015).
- S. Chaudhury et al. Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble. Phys. Rev. Lett. 99, p. 163 002 (2007).
- Z. Li et al. Improving metrology with quantum scrambling. Science 380 no. 6652, pp. 1381–1384 (2023).
- Spin-nematic squeezed vacuum in a quantum gas. Nature Physics 8 no. 4, pp. 305–308 (2012).
- X.-Y. Luo et al. Deterministic entanglement generation from driving through quantum phase transitions. Science 355 no. 6325, pp. 620–623 (2017).
- One- and two-axis squeezing of atomic ensembles in optical cavities. New Journal of Physics 19 no. 9, p. 093 021 (2017).
- Cavity-assisted single-mode and two-mode spin-squeezed states via phase-locked atom-photon coupling. Physical Review Letters 118 no. 8, p. 083 604 (2017).
- D. M. Giltner, R. W. McGowan & S. A. Lee. Atom Interferometer Based on Bragg Scattering from Standing Light Waves. Phys. Rev. Lett. 75, pp. 2638–2641 (1995).
- Measurement of the fine-structure constant as a test of the Standard Model. Science 360 no. 6385, pp. 191–195 (2018).
- Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588 no. 7836, pp. 61–65 (2020).
- E. Pedrozo-Peñafiel et al. Entanglement on an optical atomic-clock transition. Nature 588 no. 7838, pp. 414–418 (2020).
- J. M. Robinson et al. Direct comparison of two spin squeezed optical clocks below the quantum projection noise limit (2022). E-print.
- W. Wasilewski et al. Quantum Noise Limited and Entanglement-Assisted Magnetometry. Phys. Rev. Lett. 104, p. 133 601 (2010).
- Sub-Projection-Noise Sensitivity in Broadband Atomic Magnetometry. Phys. Rev. Lett. 104, p. 093 602 (2010).
- Scalable Spin Squeezing for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates. Phys. Rev. Lett. 113, p. 103 004 (2014).
- W. McGrew et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564 no. 7734, pp. 87–90 (2018).
- C. Luo et al. Cavity-Mediated Collective Momentum-Exchange Interactions (2023). E-print, URL https://doi.org/10.48550/arXiv.2304.01411.
- Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610 no. 7932, pp. 472–477 (2022).
- M. H. Muñoz Arias, I. H. Deutsch & P. M. Poggi. Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins. PRX Quantum 4, p. 020 314 (2023).
- D. Kajtoch & E. Witkowska. Quantum dynamics generated by the two-axis countertwisting Hamiltonian. Phys. Rev. A 92, p. 013 623 (2015).
- General formalism for evaluating the impact of phase noise on Bloch vector rotations. Phys. Rev. A 86, p. 032 313 (2012).
- E. J. Meier, F. A. An & B. Gadway. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nature communications 7 no. 1, p. 13 986 (2016).
- Correlated Dynamics in a Synthetic Lattice of Momentum States. Phys. Rev. Lett. 120, p. 040 407 (2018).
- E. J. Meier et al. Observation of the topological Anderson insulator in disordered atomic wires. Science 362 no. 6417, pp. 929–933 (2018).
- F. A. An et al. Nonlinear dynamics in a synthetic momentum-state lattice. Physical Review Letters 127 no. 13, p. 130 401 (2021).
- Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464 no. 7293, pp. 1301–1306 (2010).
- Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543 no. 7643, pp. 87–90 (2017).
- Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358 no. 6369, pp. 1415–1418 (2017).
- Supersolid properties of a Bose-Einstein condensate in a ring resonator. Physical Review Letters 124 no. 14, p. 143 602 (2020).
- Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, pp. 553–601 (2013).
- M. Landini et al. Formation of a Spin Texture in a Quantum Gas Coupled to a Cavity. Phys. Rev. Lett. 120, p. 223 602 (2018).
- R. Rosa-Medina et al. Observing Dynamical Currents in a Non-Hermitian Momentum Lattice. Phys. Rev. Lett. 128, p. 143 602 (2022).
- Open Quantum System Simulation of Faraday’s Induction Law via Dynamical Instabilities. Phys. Rev. Lett. 128, p. 070 603 (2022).