Optimal Fermionic Joint Measurements for Estimating Non-Commuting Majorana Observables (2402.19349v1)
Abstract: An important class of fermionic observables, relevant in tasks such as fermionic partial tomography and estimating energy levels of chemical Hamiltonians, are the binary measurements obtained from the product of anti-commuting Majorana operators. In this work, we investigate efficient estimation strategies of these observables based on a joint measurement which, after classical post-processing, yields all sufficiently unsharp (noisy) Majorana observables of even-degree. By exploiting the symmetry properties of the Majorana observables, as described by the braid group, we show that the incompatibility robustness, i.e., the minimal classical noise necessary for joint measurability, relates to the spectral properties of the Sachdev-Ye-Kitaev (SYK) model. In particular, we show that for an $n$ mode fermionic system, the incompatibility robustness of all degree--$2k$ Majorana observables satisfies $\Theta(n{-k/2})$ for $k\leq 5$. Furthermore, we present a joint measurement scheme achieving the asymptotically optimal noise, implemented by a small number of fermionic Gaussian unitaries and sampling from the set of all Majorana monomials. Our joint measurement, which can be performed via a randomization over projective measurements, provides rigorous performance guarantees for estimating fermionic observables comparable with fermionic classical shadows.
- T. Heinosaari, D. Reitzner, and P. Stano, Found. Phys. 38, 1133 (2008).
- T. Heinosaari, J. Kiukas, and D. Reitzner, Phys. Rev. A 92, 022115 (2015).
- E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001 (2019).
- M. M. Wolf, D. Perez-Garcia, and C. Fernandez, Phys. Rev. Lett. 103, 230402 (2009).
- Z. P. Xu and A. Cabello, Phys. Rev. A 99, 020103 (2019).
- M. T. Quintino, T. Vértesi, and N. Brunner, Phys. Rev. Lett. 113, 160402 (2014).
- P. Skrzypczyk, I. Šupić, and D. Cavalcanti, Phys. Rev. Lett. 122, 130403 (2019).
- J. Preskill, Quantum 2, 79 (2018).
- A. Jena, S. Genin, and M. Mosca, arXiv preprint arXiv:1907.07859 (2019).
- T. C. Yen, V. Verteletskyi, and A. F. Izmaylov, J. Chem. Theory Comput. 16, 2400 (2020).
- V. Verteletskyi, T. C. Yen, and A. F. Izmaylov, J. Chem. Phys. 152, 124114 (2020).
- X. Bonet-Monroig, R. Babbush, and T. E. O’Brien, Phys. Rev. X 10, 031064 (2020).
- H. Y. Huang, R. Kueng, and J. Preskill, Nature Physics 16, 1050 (2020).
- A. Gresch and M. Kliesch, arXiv preprint arXiv:2301.03385 (2023).
- D. E. Koh and S. Grewal, Quantum 6, 776 (2022).
- A. Zhao, N. C. Rubin, and A. Miyake, Phys. Rev. Lett. 127, 0110504 (2021).
- G. H. Low, arXiv preprint arXiv:2208.08964 (2022).
- B. O’Gorman, arXiv preprint arXiv:2207.14787 (2022).
- D. McNulty, F. B. Maciejewski, and M. Oszmaniec, Phys. Rev. Lett. 130, 100801 (2023).
- G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 126, 024105 (2007).
- S. Designolle, M. Farkas, and J. Kaniewski, New J. Phys. 21, 113053 (2019a).
- D. Cavalcanti and P. Skrzypczyk, Rep. Prog. Phys. 80, 024001 (2017).
- S. Bravyi, Phys. Rev. A 73, 042313 (2006).
- S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).
- A. Kitaev, in Proceedings of the Stanford SITP seminars (2014).
- R. Feng, G. Tian, and D. Wei, Peking Math. J. 2, 41 (2019).
- M. B. Hastings and R. O’Donnell, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (2022) pp. 776–789.
- J. Majsak, D. McNulty, and M. Oszmaniec, A Simple and Efficient Joint Measurement Strategy for Estimating Fermionic Observables and Hamiltonians (2024).
- K. Ito, Linear Algebra Appl. 518, 144 (2017).
- C. Koukouvinos and S. Stylianou, Discrete Math. 308, 2723 (2008).
- P. Jaming and M. Matolcsi, Acta Math. Hungarica 147, 179 (2015).
- R. Jozsa and A. Miyake, Proc. R. Soc. A: Math. Phys. Eng. Sci. 464, 3089 (2008).
- E. Knill, arXiv preprint quant-ph/0108033 (2001).
- S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002).
- L. G. Valiant, in Proceedings of the thirty-third annual ACM symposium on Theory of computing (2001) pp. 114–123.
- B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325 (2002).
- Google AI Quantum and Collaborators, Science 369, 1084 (2020).
- D. Hangleiter and J. Eisert, Rev. Mod. Phys. 95, 035001 (2023).
- P. Jordan and E. P. Wigner, Über das paulische äquivalenzverbot (Springer, 1993).
- R. Kunjwal, C. Heunen, and T. Fritz, Phys. Rev. A 89, 052126 (2014).
- A. Bluhm and I. Nechita, J. Math. Phys. 59, 112202 (2018).
- P. Busch, Phys. Rev. D 33, 2253 (1986).
- T. Brougham and E. Andersson, Phys. Rev. A 76, 052313 (2007).
- C. Carmeli, T. Heinosaari, and A. Toigo, Phys. Rev. Lett. 122, 130402 (2019).
- J. Kiukas, D. McNulty, and J. P. Pellonpää, Phys. Rev. A 105, 012205 (2022).
- G. Wesp, Discrete Math. 258, 339 (2002).
- R. E. A. C. Paley, Journal of Mathematics and Physics 12, 311 (1933).
- H. Kharaghani and B. Tayfeh-Rezaie, J. Combin. Des. 13, 435 (2005).
- W. Bruzda, W. Tadej, and K. Życzkowski, Online catalog of complex hadamard matrices (since 2006).
- M. R. Peterson and C. Nayak, Phys. Rev. B 87, 245129 (2013).
- W. Hoeffding, J. Am. Stat. Assoc. 58, 13 (1963).
- A. Y. Vlasov, arXiv preprint arXiv:1904.09912 (2019).
- E. Artin, Ann. Math. 48, 101 (1947).
- C. A. McCarthy and A. T. Benjamin, Math. Mag. 69, 133 (1996).
- C. Adiga, R. Balakrishnan, and W. So, Linear Algebra Appl. 432, 1825 (2010).