Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-range translational order and hyperuniformity in two-dimensional chiral active crystal (2402.19192v3)

Published 29 Feb 2024 in cond-mat.soft and cond-mat.stat-mech

Abstract: We numerically study two-dimensional athermal chiral active particles at high densities. The particles in this system perform the circular motion with frequency $\Omega$. We show that the system crystallizes at high densities even in two dimensions, accompanied by the true long-range translational order. This is due to the anomalous suppression of displacement fluctuations associated with hyperuniformity. These findings can be explained using an active elastic theory quantitatively. Surprisingly, the crystals become unstable and melt in the limit of $\Omega=0$, for the spatial dimension of four or less. This result can be explained by a mechanism akin to quenched random systems for which the lower critical dimension is four.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. S. Ramaswamy, The mechanics and statistics of active matter, Annual Review of Condensed Matter Physics 1, 323 (2010).
  2. M. E. Cates and J. Tailleur, Motility-induced phase separation, Annual Review of Condensed Matter Physics 6, 219 (2015).
  3. A. Zöttl and H. Stark, Emergent behavior in active colloids, Journal of Physics: Condensed Matter 28, 253001 (2016).
  4. A. Zöttl and H. Stark, Modeling active colloids: From active brownian particles to hydrodynamic and chemical fields, Annual Review of Condensed Matter Physics 14, 109 (2023).
  5. H. Löwen, Chirality in microswimmer motion: From circle swimmers to active turbulence, The European Physical Journal Special Topics 225, 2319 (2016).
  6. B. Liebchen and D. Levis, Chiral active matter, Europhysics Letters 139, 67001 (2022).
  7. T. Yamamoto and M. Sano, Chirality-induced helical self-propulsion of cholesteric liquid crystal droplets, Soft Matter 13, 3328 (2017).
  8. I. H. Riedel, K. Kruse, and J. Howard, A self-organized vortex array of hydrodynamically entrained sperm cells, Science 309, 300 (2005).
  9. B. Liebchen and D. Levis, Collective behavior of chiral active matter: Pattern formation and enhanced flocking, Phys. Rev. Lett. 119, 058002 (2017).
  10. B. Zhang, A. Sokolov, and A. Snezhko, Reconfigurable emergent patterns in active chiral fluids, Nature Communications 11, 4401 (2020).
  11. G.-J. Liao and S. H. L. Klapp, Emergent vortices and phase separation in systems of chiral active particles with dipolar interactions, Soft Matter 17, 6833 (2021).
  12. C. Hargus, J. M. Epstein, and K. K. Mandadapu, Odd diffusivity of chiral random motion, Phys. Rev. Lett. 127, 178001 (2021).
  13. M. Fruchart, C. Scheibner, and V. Vitelli, Odd viscosity and odd elasticity, Annual Review of Condensed Matter Physics 14, 471 (2023).
  14. Q.-L. Lei, M. P. Ciamarra, and R. Ni, Nonequilibrium strongly hyperuniform fluids of circle active particles with large local density fluctuations, Science Advances 5, eaau7423 (2019).
  15. Y. Kuroda and K. Miyazaki, Microscopic theory for hyperuniformity in two-dimensional chiral active fluid, Journal of Statistical Mechanics: Theory and Experiment , 103203 (2023).
  16. S. Torquato, Hyperuniform states of matter, Physics Reports 745, 1 (2018).
  17. E. Tjhung and L. Berthier, Criticality and correlated dynamics at the irreversibility transition in periodically driven colloidal suspensions, Journal of Statistical Mechanics: Theory and Experiment 2016, 033501 (2016).
  18. Q.-L. Lei and R. Ni, Hydrodynamics of random-organizing hyperuniform fluids, Proceedings of the National Academy of Sciences 116, 22983 (2019).
  19. Y. Lei and R. Ni, How does a hyperuniform fluid freeze?, Proceedings of the National Academy of Sciences 120, e2312866120 (2023).
  20. L. Galliano, M. E. Cates, and L. Berthier, Two-dimensional crystals far from equilibrium, Phys. Rev. Lett. 131, 047101 (2023).
  21. P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158, 383 (1967).
  22. N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).
  23. N. D. Mermin, Crystalline order in two dimensions, Phys. Rev. 176, 250 (1968).
  24. J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XYXY\mathrm{XY}roman_XY model: How birds fly together, Phys. Rev. Lett. 75, 4326 (1995).
  25. D. Nishiguchi, Deciphering long-range order in active matter: Insights from swimming bacteria in quasi-2d and electrokinetic janus particles, Journal of the Physical Society of Japan 92, 121007 (2023).
  26. H. Nakano, Y. Minami, and S.-i. Sasa, Long-range phase order in two dimensions under shear flow, Phys. Rev. Lett. 126, 160604 (2021).
  27. Y. Minami and H. Nakano, Origin of long-range order in a two-dimensional nonequilibrium system under laminar flows (2022), arXiv:2212.06390 [cond-mat.stat-mech] .
  28. H. Ikeda, Scaling theory of continuous symmetry breaking under advection (2024), arXiv:2401.01603 [cond-mat.stat-mech] .
  29. K. E. Bassler and Z. Rácz, Existence of long-range order in the steady state of a two-dimensional, two-temperature xy model, Phys. Rev. E 52, R9 (1995).
  30. S. A. M. Loos, S. H. L. Klapp, and T. Martynec, Long-range order and directional defect propagation in the nonreciprocal 𝑋𝑌𝑋𝑌\mathit{XY}italic_XY model with vision cone interactions, Phys. Rev. Lett. 130, 198301 (2023).
  31. L. Giomi, J. Toner, and N. Sarkar, Long-ranged order and flow alignment in sheared p𝑝pitalic_p-atic liquid crystals, Phys. Rev. Lett. 129, 067801 (2022).
  32. H. Ikeda, Correlated noise and critical dimensions, Phys. Rev. E 108, 064119 (2023a).
  33. H. Ikeda and Y. Kuroda, Does spontaneous symmetry breaking occur in periodically driven low-dimensional non-equilibrium classical systems? (2023), arXiv:2304.14235 [cond-mat.stat-mech] .
  34. S. van Teeffelen and H. Löwen, Dynamics of a brownian circle swimmer, Phys. Rev. E 78, 020101 (2008).
  35. Z. Ma, Q.-l. Lei, and R. Ni, Driving dynamic colloidal assembly using eccentric self-propelled colloids, Soft Matter 13, 8940 (2017).
  36. Z. Ma and R. Ni, Dynamical clustering interrupts motility-induced phase separation in chiral active brownian particles, The Journal of Chemical Physics 156, 021102 (2022).
  37. V. E. Debets, H. Löwen, and L. M. C. Janssen, Glassy dynamics in chiral fluids, Phys. Rev. Lett. 130, 058201 (2023).
  38. Y. Imry and S.-k. Ma, Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35, 1399 (1975).
  39. Supplementary material is found at [link to be added].
  40. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Bond-orientational order in liquids and glasses, Phys. Rev. B 28, 784 (1983).
  41. S. C. Kapfer and W. Krauth, Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions, Phys. Rev. Lett. 114, 035702 (2015).
  42. S. Prestipino, F. Saija, and P. V. Giaquinta, Hexatic phase in the two-dimensional gaussian-core model, Phys. Rev. Lett. 106, 235701 (2011).
  43. X.-q. Shi, F. Cheng, and H. Chaté, Extreme spontaneous deformations of active crystals, Phys. Rev. Lett. 131, 108301 (2023).
  44. P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000).
  45. X. qing Shi and H. Chaté, Effect of persistent noise on the xy model and two-dimensional crystals (2024), arXiv:2401.11175 [cond-mat.soft] .
  46. C. Huang, L. Chen, and X. Xing, Alignment destabilizes crystal order in active systems, Phys. Rev. E 104, 064605 (2021a).
  47. L. Caprini, U. Marini Bettolo Marconi, and H. Löwen, Entropy production and collective excitations of crystals out of equilibrium: The concept of entropons, Phys. Rev. E 108, 044603 (2023b).
  48. S. Dey, A. Bhattacharya, and S. Karmakar, Enhanced long wavelength mermin-wagner fluctuations in two-dimensional active crystals and glasses (2024), arXiv:2402.10625 [cond-mat.soft] .
  49. K. Kawaguchi, R. Kageyama, and M. Sano, Topological defects control collective dynamics in neural progenitor cell cultures, Nature 545, 327 (2017).
  50. T. Shimaya and K. A. Takeuchi, Tilt-induced polar order and topological defects in growing bacterial populations, PNAS Nexus 1, pgac269 (2022).
  51. J. Iwasawa, D. Nishiguchi, and M. Sano, Algebraic correlations and anomalous fluctuations in ordered flocks of janus particles fueled by an ac electric field, Phys. Rev. Research 3, 043104 (2021).
  52. B. Zhang and A. Snezhko, Hyperuniform active chiral fluids with tunable internal structure, Phys. Rev. Lett. 128, 218002 (2022).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com