Extracting quantum-critical properties from directly evaluated enhanced perturbative continuous unitary transformations (2402.18989v1)
Abstract: Directly evaluated enhanced perturbative continuous unitary transformations (deepCUTs) are used to calculate non-perturbatively extrapolated numerical data for the ground-state energy and the energy gap. The data coincides with the perturbative series up to the order with respect to which the deepCUT is truncated. We develop a general scheme to extract quantum-critical properties from the deepCUT data based on critical scaling and a strict correspondence between the truncation used for deepCUT and the length scale of correlations at the critical point. We apply our approach to transverse-field Ising models (TFIMs) as paradigmatic systems for quantum phase transitions of various universality classes depending on the lattice geometry and the choice of antiferromagnetic or ferromagnetic coupling. In particular, we focus on the quantum phase diagram of the bilayer antiferromagnetic TFIM on the triangular lattice with an Ising-type interlayer coupling. Without a field, the model is known to host a classically disordered ground state, and in the limit of decoupled layers it exhibits the 3d-XY 'order by disorder' transition of the corresponding single-layer model. Our starting point for the unknown parts of the phase diagram is a high-order perturbative calculation about the limit of isolated dimers where the model is in a gapped phase.
- M. Takahashi, Half-filled Hubbard model at low temperature, J. Phys. C: Solid State Phys. 10, 1289 (1977), 10.1088/0022-3719/10/8/031.
- P.-O. Löwdin, Studies in Perturbation Theory. IV. Solution of Eigenvalue Problem by Projection Operator Formalism, J. Math. Phys. 3, 969 (1962), 10.1063/1.1724312.
- G. S. Uhrig and B. Normand, Magnetic properties of (𝐕𝐎)𝟐𝐏𝟐𝐎𝟕subscript𝐕𝐎2subscript𝐏2subscript𝐎7{(\mathrm{VO})}_{2}{\mathrm{P}}_{2}{\mathrm{O}}_{7}bold_( bold_VO bold_) start_POSTSUBSCRIPT bold_2 end_POSTSUBSCRIPT bold_P start_POSTSUBSCRIPT bold_2 end_POSTSUBSCRIPT bold_O start_POSTSUBSCRIPT bold_7 end_POSTSUBSCRIPT from frustrated interchain coupling, Phys. Rev. B 58, R14705 (1998), 10.1103/PhysRevB.58.R14705.
- C. Knetter and G. Uhrig, Perturbation theory by flow equations: dimerized and frustrated 𝐒=𝟏/𝟐𝐒12{S}=1/2bold_italic_S bold_= bold_1 bold_/ bold_2 chain, The European Physical Journal B - Condensed Matter and Complex Systems 13(2), 209–225 (2000), 10.1007/s100510050026.
- J. Oitmaa, C. Hamer and W. Zheng, Series Expansion Methods for Strongly Interacting Lattice Models, Cambridge University Press, Cambridge, 10.1017/CBO9780511584398 (2006).
- M. Hörmann and K. P. Schmidt, Projective cluster-additive transformation for quantum lattice models, SciPost Phys. 15, 097 (2023), 10.21468/SciPostPhys.15.3.097.
- H. X. He, C. J. Hamer and J. Oitmaa, High-temperature series expansions for the (2+1)-dimensional Ising model, Journal of Physics A: Mathematical and General 23(10), 1775 (1990), 10.1088/0305-4470/23/10/018.
- A. Irving and C. Hamer, Methods in hamiltonian lattice field theory (ii). linked-cluster expansions, Nuclear Physics B 230(3), 361 (1984), https://doi.org/10.1016/0550-3213(84)90218-9.
- Numerical linked-cluster algorithms. i. spin systems on square, triangular, and kagomé lattices, Phys. Rev. E 75, 061118 (2007), 10.1103/PhysRevE.75.061118.
- Numerical linked-cluster approach to quantum lattice models, Phys. Rev. Lett. 97, 187202 (2006), 10.1103/PhysRevLett.97.187202.
- Corner contribution to the entanglement entropy of strongly interacting O(2) quantum critical systems in 2+1 dimensions, Phys. Rev. B 90, 235106 (2014), 10.1103/PhysRevB.90.235106.
- Hybrid quantum-classical algorithm for the transverse-field ising model in the thermodynamic limit (2023), 2310.07600.
- Effective models for gapped phases of strongly correlated quantum lattice models, Europhysics Letters 94(1), 17004 (2011), 10.1209/0295-5075/94/17004.
- A generalized perspective on non-perturbative linked-cluster expansions, Europhysics Letters 110(2), 20006 (2015), 10.1209/0295-5075/110/20006.
- Entanglement at a two-dimensional quantum critical point: A numerical linked-cluster expansion study, Phys. Rev. Lett. 110, 135702 (2013), 10.1103/PhysRevLett.110.135702.
- M. Powalski, G. S. Uhrig and K. P. Schmidt, Roton minimum as a fingerprint of magnon-Higgs scattering in ordered quantum antiferromagnets, Phys. Rev. Lett. 115, 207202 (2015), 10.1103/PhysRevLett.115.207202.
- Continuous similarity transformation for critical phenomena: Easy-axis antiferromagnetic xxz model, Phys. Rev. Res. 5, 013132 (2023), 10.1103/PhysRevResearch.5.013132.
- N. A. Drescher, T. Fischer and G. S. Uhrig, Truncation errors in self-similar continuous unitary transformations, The European Physical Journal B 79(2), 225–240 (2010), 10.1140/epjb/e2010-10723-6.
- Continuous similarity transformation for critical phenomena: Easy-axis antiferromagnetic XXZ model, Phys. Rev. Res. 5, 013132 (2023), 10.1103/PhysRevResearch.5.013132.
- Series expansions in closed and open quantum many-body systems with multiple quasiparticle types, Physical Review A 108(1) (2023), 10.1103/physreva.108.013323.
- H. Krull, N. A. Drescher and G. S. Uhrig, Enhanced perturbative continuous unitary transformations, Phys. Rev. B 86, 125113 (2012), 10.1103/PhysRevB.86.125113.
- M. Hafez-Torbati and G. S. Uhrig, Singlet exciton condensation and bond-order-wave phase in the extended Hubbard model, Phys. Rev. B 96, 125129 (2017), 10.1103/PhysRevB.96.125129.
- M. Hafez Torbati, N. A. Drescher and G. S. Uhrig, Dispersive excitations in one-dimensional ionic Hubbard model, Phys. Rev. B 89, 245126 (2014), 10.1103/PhysRevB.89.245126.
- Three-body bound states in antiferromagnetic spin ladders, Communications Physics 5(1) (2022), 10.1038/s42005-022-00986-0.
- M. Hafez-Torbati and G. S. Uhrig, Orientational bond and Néel order in the two-dimensional ionic Hubbard model, Phys. Rev. B 93, 195128 (2016), 10.1103/PhysRevB.93.195128.
- Caution on emergent continuous symmetry: A Monte Carlo investigation of the transverse-field frustrated Ising model on the triangular and honeycomb lattices, Phys. Rev. B 96, 115160 (2017), 10.1103/PhysRevB.96.115160.
- Carving out OPE space and precise 𝐎(𝟐)𝐎2{O}(2)bold_italic_O bold_( bold_2 bold_) model critical exponents, Journal of High Energy Physics 142(6), 20006 (2020), 10.1007/JHEP06(2020)142.
- Precision islands in the Ising and 𝐎(𝐍)𝐎𝐍{O}({N})bold_italic_O bold_( bold_italic_N bold_) models, Journal of High Energy Physics 2016(8), 36 (2016), 10.1007/JHEP08(2016)036.
- S. V. Isakov and R. Moessner, Interplay of quantum and thermal fluctuations in a frustrated magnet, Phys. Rev. B 68, 104409 (2003), 10.1103/PhysRevB.68.104409.
- Disorder by disorder and flat bands in the kagome transverse field ising model, Phys. Rev. B 87, 054404 (2013), 10.1103/PhysRevB.87.054404.
- R. Moessner and S. L. Sondhi, Ising models of quantum frustration, Phys. Rev. B 63, 224401 (2001), 10.1103/PhysRevB.63.224401.
- Perturbative approach to an exactly solved problem: Kitaev honeycomb model, Phys. Rev. B 78, 245121 (2008), 10.1103/PhysRevB.78.245121.
- Finite-lattice methods in quantum Hamiltonian field theory. I. the Ising model, Journal of Physics A: Mathematical and General 14(1), 241 (1981), 10.1088/0305-4470/14/1/024.
- Adapted continuous unitary transformation to treat systems with quasi-particles of finite lifetime, New Journal of Physics 12(3), 033048 (2010), 10.1088/1367-2630/12/3/033048.
- Solving Ordinary Differential Equations I, Springer, Berlin (1993).
- K. Cöster and K. P. Schmidt, Extracting critical exponents for sequences of numerical data via series extrapolation techniques, Phys. Rev. E 94, 022101 (2016), 10.1103/PhysRevE.94.022101.
- A. A. Reischl, Derivation of effective models using self-similar continuous unitary transformations in real space. (2006).
- J. Rogiers, E. W. Grundke and D. D. Betts, The spin model. III. analysis of high temperature series expansions of some thermodynamic quantities in two dimensions, Canadian Journal of Physics 57(10), 1719 (1979), 10.1139/p79-237, https://doi.org/10.1139/p79-237.