Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Orthogonal Basis Method for Computing Multiple Solutions of Differential Equations with polynomial nonlinearities (2402.18793v2)

Published 29 Feb 2024 in math.NA and cs.NA

Abstract: This paper presents an innovative approach, the Adaptive Orthogonal Basis Method, tailored for computing multiple solutions to differential equations characterized by polynomial nonlinearities. Departing from conventional practices of predefining candidate basis pools, our novel method adaptively computes bases, considering the equation's nature and structural characteristics of the solution. It further leverages companion matrix techniques to generate initial guesses for subsequent computations. Thus this approach not only yields numerous initial guesses for solving such equations but also adapts orthogonal basis functions to effectively address discretized nonlinear systems. Through a series of numerical experiments, this paper demonstrates the method's effectiveness and robustness. By reducing computational costs in various applications, this novel approach opens new avenues for uncovering multiple solutions to differential equations with polynomial nonlinearities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Application of numerical continuation to compute all solutions of semilinear elliptic equations. Adv. Geom, 76(2009):pp. 1–10.
  2. Solution of polynomial systems derived from differential equations. Computing, 76(2006):pp. 1–10.
  3. B. K. Alpert and V. Rokhlin. A fast algorithm for the evaluation of legendre expansions. SIAM J. Sci. Stat. Comput, 12(1991):pp. 158–179.
  4. P.J. McKenna B. Breuer and M. Plum. Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differential Equations, 195(2003):pp. 243–269.
  5. Search extension method for multiple solutions of a nonlinear problem. Comp. Math. Appl., 47(2004):pp. 327–343.
  6. A mountain pass method for the numerical solution of semilinear elliptic problems. Nonlinear. Anal., 20(1993):pp. 417–437.
  7. G. Steidl D. Potts and M. Tasche. Fast algorithms for discrete polynomial transforms. Math. Comp, 67(1998):pp. 1577–1590.
  8. H. T. Davis. Introduction to nonlinear differential and integral equations. US Atomic Energy Commission, 1960.
  9. A high-linking algorithm for sign-changing solutions of semilinear elliptic equations. Nonlinear. Anal., 38(1999):pp. 151–172.
  10. W. E and X. Zhou. The gentlest ascent dynamics. Nonlinearity, 24(2011):PP. 1831–1842.
  11. Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J. Sci. Comput., 37(2015):pp. A2026–A2045.
  12. A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature, 417(2002):pp. 260–262.
  13. A filter-trust-region method for unconstrained optimization. SIAM J. Optim, 16(2006):pp. 341–357.
  14. N. Hale and A. Townsend. A fast, simple and stable chebyshev-legendre transform using an asymptotic formula. SIAM J. SCI. Comput, 36(2014):pp. A148–A167.
  15. A bootstrapping approach for computing multiple solutions of differential equations. J. Comput. Appl. Math., 258(2014):pp. 181–190.
  16. A homotopy method with adaptive basis selection for computing multiple solutions of differential equations. Journal of Scientific Computing, 82:1–17, 2020.
  17. Companion-based multi-level finite element method for computing multiple solutions of nonlinear differential equations. arXiv preprint arXiv:2305.04162, 2023.
  18. Spatial pattern formation in reaction–diffusion models: a computational approach. Journal of Mathematical Biology, 80:521–543, 2020.
  19. High-index optimization-based shrinking dimer method for finding high-index saddle points. SIAM J. SCI. Comput, 6(2019):pp. A3576–A3595.
  20. Optimization-based shrinking dimer method for finding transition states. SIAM J. SCI. Comput, 38(2016):pp. A528–A544.
  21. An efficient spectral trust-region deflation method for multiple solutions. J. Sci. Comput, 32(2023):pp. 1–23.
  22. A minimax method for finding multiple critical points and its applications to semilinear pdes. SIAM J. Sci. Comput., 23(2001):pp. 840–865.
  23. Discrete cosine transform. IEEE Trans. Comput, 100(1974):pp. 90–93.
  24. J. Nocedal and S. J. Wright. Numerical optimization, volume 25. Springer series in operations research, 1999.
  25. Spectral methods: algorithms, analysis and applications, volume 41. Springer Science & Business Media, 2011.
  26. Optimization theory and methods: nonlinear programming, volume 1. Springer Science & Business Media, 2006.
  27. E. Tadmor. A review of numerical methods for nonlinear partial differential equations. B. Am. Math. Soc., 49(2012):pp. 507–554.
  28. L. N. Trefethen. Spectral methods in MATLAB, volume 41. Tsinghua University Press, 2011.
  29. A constrained gentlest ascent dynamics and its applications to find excited states of bose-einstein condensates. https://arxiv.org/pdf/2209.04684v1.
  30. Two-level spectral methods for nonlinear elliptic equations with multiple solutions. SIAM J. Sci. Comput, 40(2018):pp. B1180–B1205.
  31. W. R. Hao X. Y. E. Zhao, L. Q. Chen and Y. X. Zhao. Bifurcation analysis reveals solution structures of phase field models. Comm. App. Math. Com, 6(2024):pp. 64–89.
  32. An improved search-extension method for computing multiple solutions of semilinear PDEs. IMA J. Numer. Anal., 25(2005):pp. 549–576.
  33. A minimax method for finding multiple critical points in banach spaces and its application to quasi-linear elliptic PDEs. SIAM J. Sci. Comput., 26(2005):pp. 1796–1809.
  34. Numerical methods for computing nonlinear eigenpairs: Part I. Iso-Homogeneous cases. SIAM J. Sci. Comput., 29(2007):pp. 1355–1374.
  35. Numerical methods for computing nonlinear eigenpairs: Part II. Non-Iso-Homogeneous cases. SIAM J. Sci. Comput, 30(2008):pp. 937–956.
  36. Z. X. Li Z. H. Yang and H. l. Zhu. Bifurcation method for solving multiple positive solutions to henon equation. Sci. China Ser, 37(2007):pp. 1417–1428.
  37. Bifurcation method for solving multiple positive solutions to boundary value problem of henon equation on unit disk. Comput. Math. Appl, 62(2011):pp. 3775–3784.
  38. A derivative-free algorithm for least-squares minimization. SIAM J. Optim., 20(2010):pp. 3555–3576.
  39. J. Y. Zhang and Q. Du. Shrinking dimer dynamics and its applications to saddle point search. SIAM J. Numer. Anal, 50(2012):pp. A1899–A1921.
  40. Eigenfunction expansion method for multiple solutions of semilinear elliptic equations with polynomial nonlinearity. SIAM J. Numer. Anal., 51(2013):pp. 2680–2699.
  41. J. X. Zhou. Instability analysis of saddle points by a local minimax method. Math. Comp., 74(2004):pp. 1391–1411.

Summary

We haven't generated a summary for this paper yet.