Sixth-order parabolic equation on an interval: Eigenfunction expansion, Green's function, and intermediate asymptotics for a finite thin film with elastic resistance (2402.18740v2)
Abstract: A linear sixth-order partial differential equation (PDE) of parabolic'' type describes the dynamics of thin liquid films beneath surfaces with elastic bending resistance when deflections from the equilibrium film height are small. On a finite domain, the associated sixth-order eigenvalue problem is self-adjoint for the boundary conditions corresponding to a thin film in a closed trough, and the eigenfunctions form a complete orthonormal set. Using these eigenfunctions, we derive the Green's function for the governing sixth-order PDE on a finite interval and compare it to the known infinite-line solution. Further, we propose a Galerkin spectral method based on the constructed sixth-order eigenfunctions and their derivative expansions. The system of ordinary differential equations for the time-dependent expansion coefficients is solved by standard numerical methods. The numerical approach is applied to versions of the governing PDE with a second-order spatial derivative (in addition to the sixth-order one), which arises from gravity acting on the film. In the absence of gravity, we demonstrate the self-similar intermediate asymptotics of initially localized disturbances on the film surface, at least until the disturbances
feel'' the finite boundaries, and show that the derived Green's function is an attractor for such solutions. In the presence of gravity, we use the proposed Galerkin numerical method to demonstrate that self-similar behavior persists, albeit for shortened intervals of time, even for large values of the gravity-to-bending ratio.\[1mm]
- Similarity, Self-Similarity, and Intermediate Asymptotics. volume 14 of Cambridge Texts in Applied Mathematics. Cambridge University Press, New York, NY. doi:10.1017/CBO9781107050242.
- Self-similar solutions as intermediate asymptotics. Annu. Rev. Fluid Mech. 4, 285–312. doi:10.1146/annurev.fl.04.010172.001441.
- Elementary Differential Equations and Boundary Value Problems. 10th ed., Wiley, Hoboken, NJ.
- Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft actuators. J. Fluid Mech. 862, 732–752. doi:10.1017/jfm.2018.967, arXiv:1703.06820.
- Interfacial instability of thin films in soft microfluidic configurations actuated by electro-osmotic flow. Phys. Rev. Fluids 5, 104201. doi:10.1103/PhysRevFluids.5.104201.
- Correction to ‘‘Modeling the growth of laccoliths and large mafic sills: Role of magma body forces’’. J. Geophys. Res.: Solid Earth 116, B08211. doi:10.1029/2011JB008618.
- Modeling the growth of laccoliths and large mafic sills: Role of magma body forces. J. Geophys. Res.: Solid Earth 116, B02203. doi:10.1029/2010JB007648.
- Similarity and singularity in adhesive elastohydrodynamic touchdown. Phys. Fluids 28, 011702. doi:10.1063/1.4938115, arXiv:1507.03912.
- DLMF, 2023. NIST Digital Library of Mathematical Functions. Release 1.1.11 of 2023-09-15. URL: https://dlmf.nist.gov/. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
- Green’s Functions with Applications. 2nd ed., Chapman and Hall/CRC, New York, NY. doi:10.1201/9781315371412.
- Dynamics of elastocapillary rise. J. Fluid Mech. 679, 641--654. doi:10.1017/jfm.2019.994, arXiv:1008.3702.
- Moving-boundary and fixed-domain problems for a sixth-order thin-film equation. Eur. J. Appl. Math. 15, 713--754. doi:10.1017/S0956792504005753.
- Dynamics of fixed-volume pinned films -- dealing with a non-self-adjoint thin-film problem. J. Fluid Mech. 969, A17. doi:10.1017/jfm.2023.550, arXiv:2209.04531.
- Elastic-plated gravity currents. Eur. J. Appl. Math. 26, 1--31. doi:10.1017/S0956792514000291.
- Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802. doi:10.1103/PhysRevLett.93.137802.
- Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 91, 1135--1142. doi:10.1063/1.1427407.
- Isolation oxidation of silicon: The reaction-controlled case. SIAM. J. Appl. Math. 49, 1064--1080. doi:10.1137/0149064.
- Lubricated wrinkles: Imposed constraints affect the dynamics of wrinkle coarsening. Phys. Rev. Fluids 2, 014202. doi:10.1103/PhysRevFluids.2.014202, arXiv:1609.04598.
- Thermal capillary waves on bounded nanoscale thin films. Phys. Rev. E 107, 015105. doi:10.1103/PhysRevE.107.015105, arXiv:2301.09798.
- Start-up flow in shallow deformable microchannels. J. Fluid Mech. 885, A25. doi:10.1017/jfm.2019.994, arXiv:1902.07167.
- Microwave processing: Current background and effects on the physicochemical and microbiological aspects of dairy products. Compr. Rev. Food Sci. Food Saf. 18, 67--83. doi:10.1111/1541-4337.12409.
- Self-similarity and energy dissipation in stepped polymer films. Phys. Rev. Lett. 109, 128303. doi:10.1103/PhysRevLett.109.128303, arXiv:1209.1228.
- Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res.: Solid Earth 116, B05205. doi:10.1029/2010JB008108.
- Interfacial Dynamics Pioneer Stephen H. Davis (1939--2021). Annu. Rev. Fluid Mech. 56, 1--20. doi:10.1146/annurev-fluid-121621-034932.
- Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931--980. doi:10.1103/RevModPhys.69.931.
- Orthonormal eigenfunction expansions for sixth-order boundary value problems. J. Phys.: Conf. Ser. 2675, 012016. doi:10.1088/1742-6596/2675/1/012016, arXiv:2308.00673.
- Asymptotic regimes in elastohydrodynamic and stochastic leveling on a viscous film. Phys. Rev. Fluids 4, 124003. doi:10.1103/PhysRevFluids.4.124003, arXiv:1902.10470.
- Universal self-similar attractor in the bending-driven levelling of thin viscous films. Proc. R. Soc. A 477, 20210354. doi:10.1098/rspa.2021.0354, arXiv:2011.10297.
- Viscous flow under an elastic sheet. J. Fluid Mech. 905, A30. doi:10.1017/jfm.2020.745.
- Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comput. 4, 136--148. doi:10.1137/0904010.
- Elastic deformations driven by non-uniform lubrication flows. J. Fluid Mech. 812, 841--865. doi:10.1017/jfm.2016.830, arXiv:1607.02451.
- Coalescence of elastic blisters filled with a viscous fluid. Phys. Rev. Lett. 132, 074001. doi:10.1103/PhysRevLett.132.074001, arXiv:2308.01774.
- Capillary-driven flow induced by a stepped perturbation atop a viscous film. Phys. Fluids 24, 102111. doi:10.1063/1.4763569, arXiv:1210.5905.
- Fundamentals of fluid dynamics with an introduction to the importance of interfaces, in: Bocquet, L., Quéré, D., Witten, T.A., Cugliandolo, L.F. (Eds.), Soft Interfaces. Oxford University Press, New York, NY. volume 98 of Lecture Notes of the Les Houches Summer School, pp. 3--79. doi:10.1093/oso/9780198789352.003.0001.
- An Introduction to Numerical Analysis. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511801181.
- A model for the dynamics of crater-centered intrusion: Application to lunar floor-fractured craters. J. Geophys. Res.: Planets 119, 286--312. doi:10.1002/2013JE004467.
- Transient dynamics of an elastic Hele-Shaw cell due to external forces with application to impact mitigation. J. Fluid Mech. 800, 517--530. doi:10.1017/jfm.2016.418, arXiv:1512.00730.
- Wolfram Language and System Documentation Centre, 2024. Advanced Numerical Differential Equation Solving in the Wolfram Language. Online. URL: https://reference.wolfram.com/language/tutorial/NDSolveOverview.html. accessed February 3, 2024.
- Mathematica, Version 13.3. URL: https://www.wolfram.com/mathematica. Champaign, IL.