Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hefty: A Modular Reconfigurable Robot for Advancing Robot Manipulation in Agriculture (2402.18710v1)

Published 28 Feb 2024 in cs.RO

Abstract: This paper presents a modular, reconfigurable robot platform for robot manipulation in agriculture. While robot manipulation promises great advancements in automating challenging, complex tasks that are currently best left to humans, it is also an expensive capital investment for researchers and users because it demands significantly varying robot configurations depending on the task. Modular robots provide a way to obtain multiple configurations and reduce costs by enabling incremental acquisition of only the necessary modules. The robot we present, Hefty, is designed to be modular and reconfigurable. It is designed for both researchers and end-users as a means to improve technology transfer from research to real-world application. This paper provides a detailed design and integration process, outlining the critical design decisions that enable modularity in the mobility of the robot as well as its sensor payload, power systems, computing, and fixture mounting. We demonstrate the utility of the robot by presenting five configurations used in multiple real-world agricultural robotics applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. L. F. P. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead,” Robotics, vol. 10, p. 52, Mar. 2021.
  2. N. Srinivasan, P. Prabhu, S. S. Smruthi, N. V. Sivaraman, S. J. Gladwin, R. Rajavel, and A. R. Natarajan, “Design of an autonomous seed planting robot,” in 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 1–4, Dec. 2016.
  3. L. Haibo, D. Shuliang, L. Zunmin, and Y. Chuijie, “Study and Experiment on a Wheat Precision Seeding Robot,” Journal of Robotics, vol. 2015, pp. 1–9, 2015.
  4. A. Bender, B. Whelan, and S. Sukkarieh, “A high-resolution, multimodal data set for agricultural robotics: A Ladybird’s-eye view of Brassica,” Journal of Field Robotics, vol. 37, no. 1, pp. 73–96, 2020.
  5. “Ecorobotix : Smart spraying for ultra-localised treatments..” https://ecorobotix.com/en/.
  6. A. S. Ovchinnikov, V. S. Bocharnikov, N. S. Vorob’yeva, and A. G. Ivanov, “Kinematic study of the weeding robot,” IOP Conference Series: Materials Science and Engineering, vol. 489, p. 012056, Mar. 2019.
  7. A. Ruckelshausen, P. Biber, M. Dorna, H. Gremmes, R. Klose, A. Linz, R. Rahe, R. Resch, M. Thiel, D. Trautz, and U. Weiss, “BoniRob–an autonomous field robot platform for individual plant phenotyping,” Precision agriculture, vol. 9, no. 841, p. 1, 2009.
  8. “Carbon Robotics.” https://carbonrobotics.com.
  9. S. Vishnu Rajendran, U. K. Lincoln, B. Debnath, S. Mghames, W. Mandil, S. Parsa, S. Parsons, and A. Ghalamzan, “Selective Harvesting Robots: A Review,”
  10. A. Silwal, J. R. Davidson, M. Karkee, C. Mo, Q. Zhang, and K. Lewis, “Design, integration, and field evaluation of a robotic apple harvester,” Journal of Field Robotics, vol. 34, no. 6, pp. 1140–1159, 2017.
  11. J. R. Davidson, A. Silwal, C. J. Hohimer, M. Karkee, C. Mo, and Q. Zhang, “Proof-of-concept of a robotic apple harvester,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 634–639, Oct. 2016.
  12. S. Hayashi, K. Ganno, Y. Ishii, and I. Tanaka, “Robotic harvesting system for eggplants,” Japan Agricultural Research Quarterly: JARQ, vol. 36, no. 3, pp. 163–168, 2002.
  13. D. Sepulveda, R. Fernandez, E. Navas, M. Armada, and P. Gonzalez-De-Santos, “Robotic Aubergine Harvesting Using Dual-Arm Manipulation,” IEEE Access, vol. 8, pp. 121889–121904, 2020.
  14. Y. Yu, K. Zhang, H. Liu, L. Yang, and D. Zhang, “Real-Time Visual Localization of the Picking Points for a Ridge-Planting Strawberry Harvesting Robot,” IEEE Access, vol. 8, pp. 116556–116568, 2020.
  15. C. W. Bac, E. J. van Henten, J. Hemming, and Y. Edan, “Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead,” Journal of Field Robotics, vol. 31, no. 6, pp. 888–911, 2014.
  16. C. Schütz, J. Pfaff, J. Baur, T. Buschmann, and H. Ulbrich, “A Modular Robot System for Agricultural Applications,”
  17. M. Levin and A. Degani, “Design of a Task-Based Modular Re-Configurable Agricultural Robot,” IFAC-PapersOnLine, vol. 49, pp. 184–189, Jan. 2016.
  18. M. Levin and A. Degani, “A conceptual framework and optimization for a task-based modular harvesting manipulator,” Computers and Electronics in Agriculture, vol. 166, p. 104987, Nov. 2019.
  19. A. Atefi, Y. Ge, S. Pitla, and J. Schnable, “Robotic Technologies for High-Throughput Plant Phenotyping: Contemporary Reviews and Future Perspectives,” Frontiers in Plant Science, vol. 12, 2021.
  20. J. Zhang, L. Gong, C. Liu, Y. Huang, D. Zhang, and Z. Yuan, “Field Phenotyping Robot Design and Validation for the Crop Breeding,” IFAC-PapersOnLine, vol. 49, pp. 281–286, Jan. 2016.
  21. L. Xiang, J. Gai, Y. Bao, J. Yu, P. S. Schnable, and L. Tang, “Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks,” Journal of Field Robotics, vol. 40, pp. 1034–1053, Aug. 2023.
  22. Y. Bao, L. Tang, S. Srinivasan, and P. S. Schnable, “Field-based architectural traits characterisation of maize plant using time-of-flight 3D imaging,” Biosystems Engineering, vol. 178, pp. 86–101, 2019.
  23. G. Alenyà, B. Dellen, S. Foix, and C. Torras, “Robotic leaf probing via segmentation of range data into surface patches,” 2012.
  24. A. Atefi, Y. Ge, S. Pitla, and J. Schnable, “In vivo human-like robotic phenotyping of leaf traits in maize and sorghum in greenhouse,” Computers and Electronics in Agriculture, vol. 163, p. 104854, Aug. 2019.
  25. T. Mueller-Sim, M. Jenkins, J. Abel, and G. Kantor, “The Robotanist: A ground-based agricultural robot for high-throughput crop phenotyping,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), (Singapore, Singapore), pp. 3634–3639, IEEE, May 2017.
  26. J. Abel, “In-fieldrobotic leaf grasping and automated crop spectroscopy,” Carnegie Mellon University: Pittsburgh, 2018.
  27. G. Colucci, A. Botta, L. Tagliavini, P. Cavallone, L. Baglieri, and G. Quaglia, “Kinematic Modeling and Motion Planning of the Mobile Manipulator Agri.Q for Precision Agriculture,” Machines, vol. 10, p. 321, May 2022.
  28. A. Silwal, F. Yandun, A. Nellithimaru, T. Bates, and G. Kantor, “Bumblebee: A Path Towards Fully Autonomous Robotic Vine Pruning,” Field Robotics, vol. 2, pp. 1661–1696, Mar. 2022.
  29. L. Grimstad and P. J. From, “The Thorvald II Agricultural Robotic System,” Robotics, vol. 6, p. 24, Dec. 2017.
  30. “Farm-ng.” https://farm-ng.squarespace.com.
  31. A. Silwal, T. Parhar, F. Yandun, H. Baweja, and G. Kantor, “A Robust Illumination-Invariant Camera System for Agricultural Applications,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3292–3298, Sept. 2021.
  32. S. Chiranjeevi, M. Sadaati, Z. K. Deng, J. Koushik, T. Z. Jubery, D. Mueller, M. E. O. Neal, N. Merchant, A. Singh, A. K. Singh, S. Sarkar, A. Singh, and B. Ganapathysubramanian, “Deep learning powered real-time identification of insects using citizen science data,” June 2023.
  33. H. Ibrahim, S. Yin, S. Moru, Y. Zhu, M. J. Castellano, and L. Dong, “In Planta Nitrate Sensor Using a Photosensitive Epoxy Bioresin,” ACS Applied Materials & Interfaces, vol. 14, pp. 25949–25961, June 2022.
  34. Y. Jiao, X. Wang, Y. Chen, M. J. Castellano, J. C. Schnable, P. S. Schnable, and L. Dong, “In-Planta Nitrate Detection Using Insertable Plant Microsensor,” in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 37–40, June 2019.
  35. “iNaturalist.” https://www.inaturalist.org/.
Citations (2)

Summary

We haven't generated a summary for this paper yet.