Efficient learning of quantum states prepared with few fermionic non-Gaussian gates (2402.18665v3)
Abstract: The experimental realization of increasingly complex quantum states underscores the pressing need for new methods of state learning and verification. In one such framework, quantum state tomography, the aim is to learn the full quantum state from data obtained by measurements. Without prior assumptions on the state, this task is prohibitively hard. Here, we present an efficient algorithm for learning states on $n$ fermion modes prepared by any number of Gaussian and at most $t$ non-Gaussian gates. By Jordan-Wigner mapping, this also includes $n$-qubit states prepared by nearest-neighbour matchgate circuits with at most $t$ SWAP-gates. Our algorithm is based exclusively on single-copy measurements and produces a classical representation of a state, guaranteed to be close in trace distance to the target state. The sample and time complexity of our algorithm is $\mathrm{poly}(n,2t)$; thus if $t=O(\log(n))$, it is efficient. We also show that, if $t$ scales slightly more than logarithmically, any learning algorithm to solve the same task must be inefficient, under common cryptographic assumptions. We also provide an efficient property testing algorithm that, given access to copies of a state, determines whether such a state is far or close to the set of states for which our learning algorithm works. In addition to the outputs of quantum circuits, our tomography algorithm is efficient for some physical target states, such as those arising in time dynamics and low-energy physics of impurity models. Beyond tomography, our work sheds light on the structure of states prepared with few non-Gaussian gates and offers an improved upper bound on their circuit complexity, enabling an efficient circuit compilation method.
- A. Anshu and S. Arunachalam, A survey on the complexity of learning quantum states (2023), arXiv:2305.20069 [quant-ph] .
- C. Rouzé and D. S. França, Learning quantum many-body systems from a few copies (2023), arXiv:2107.03333 [quant-ph] .
- A. Montanaro, Learning stabilizer states by bell sampling (2017), arXiv:1707.04012 [quant-ph] .
- S. Aaronson and S. Grewal, Efficient tomography of non-interacting fermion states (2023), arXiv:2102.10458 [quant-ph] .
- J. Surace and L. Tagliacozzo, SciPost Physics Lecture Notes 10.21468/scipostphyslectnotes.54 (2022).
- B. M. Terhal and D. P. DiVincenzo, Physical Review A 65, 10.1103/physreva.65.032325 (2002).
- E. Knill, Fermionic linear optics and matchgates (2001), arXiv:quant-ph/0108033 [quant-ph] .
- R. Jozsa and A. Miyake, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, 3089 (2008).
- L. G. Valiant, SIAM Journal on Computing 31, 1229 (2002), https://doi.org/10.1137/S0097539700377025 .
- P. Echenique and J. L. Alonso, Molecular Physics 105, 3057–3098 (2007).
- R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, 2004).
- G. Giuliani and G. Vignale, Quantum theory of the electron liquid (Cambridge university press, 2008).
- J. R. Schrieffer, Theory of superconductivity (CRC press, 2018).
- R. J. Baxter, Exactly solved models in statistical mechanics (1982).
- L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).
- A. Kitaev, Annals of Physics 321, 2–111 (2006).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- D. J. Brod and E. F. Galvão, Physical Review A 84, 10.1103/physreva.84.022310 (2011).
- D. J. Brod, The computational power of non-interacting particles (2014), arXiv:1412.7637 [quant-ph] .
- D. Gottesman, The heisenberg representation of quantum computers (1998), arXiv:quant-ph/9807006 [quant-ph] .
- S. Bravyi and D. Gosset, Physical Review Letters 116, 10.1103/physrevlett.116.250501 (2016).
- S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004).
- S. F. Oliviero, L. Leone, and A. Hamma, Physics Letters A 418, 127721 (2021).
- L. Leone, S. F. E. Oliviero, and A. Hamma, Learning t-doped stabilizer states (2023), arXiv:2305.15398 [quant-ph] .
- D. Hangleiter and M. J. Gullans, Bell sampling from quantum circuits (2024), arXiv:2306.00083 [quant-ph] .
- B. Dias and R. Koenig, Classical simulation of non-gaussian fermionic circuits (2023), arXiv:2307.12912 [quant-ph] .
- O. Reardon-Smith, M. Oszmaniec, and K. Korzekwa, Improved simulation of quantum circuits dominated by free fermionic operations (2023), arXiv:2307.12702 [quant-ph] .
- J. Cudby and S. Strelchuk, Gaussian decomposition of magic states for matchgate computations (2023), arXiv:2307.12654 [quant-ph] .
- T. Esslinger, Annual Review of Condensed Matter Physics 1, 129 (2010), https://doi.org/10.1146/annurev-conmatphys-070909-104059 .
- S. Arunachalam, A. B. Grilo, and A. Sundaram, Electron. Colloquium Comput. Complex. TR19-041 (2019), TR19-041 .
- P. Ananth, A. Poremba, and V. Vaikuntanathan, Revocable cryptography from learning with errors (2023), arXiv:2302.14860 [quant-ph] .
- A. Gupte, N. Vafa, and V. Vaikuntanathan, Continuous lwe is as hard as lwe and applications to learning gaussian mixtures (2022), arXiv:2204.02550 [cs.CR] .
- Z. Ji, Y.-K. Liu, and F. Song, Pseudorandom quantum states, in Advances in Cryptology – CRYPTO 2018 (Springer International Publishing, 2018) p. 126–152.
- Z. Brakerski and O. Shmueli, (pseudo) random quantum states with binary phase (2019), arXiv:1906.10611 [quant-ph] .
- S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210–226 (2002).
- B. Zumino, Journal of Mathematical Physics 3, 1055 (2004), https://pubs.aip.org/aip/jmp/article-pdf/3/5/1055/11115137/1055_1_online.pdf .
- A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (CRC Press, 2017).
- S. Bravyi and D. Gosset, Communications in Mathematical Physics 356, 451–500 (2017).
- X. Bonet-Monroig, R. Babbush, and T. E. O’Brien, Phys. Rev. X 10, 031064 (2020).
- A. Zhao, N. C. Rubin, and A. Miyake, Physical Review Letters 127, 10.1103/physrevlett.127.110504 (2021).
- J. Gao, Physical Review A 92, 10.1103/physreva.92.052331 (2015).
- R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics (Springer New York, 1996).
- R. O’Donnell and R. Venkateswaran, The quantum union bound made easy (2021), arXiv:2103.07827 [quant-ph] .
- S. Aaronson, Qma/qpoly is contained in pspace/poly: De-merlinizing quantum protocols (2006), arXiv:quant-ph/0510230 [quant-ph] .
- R. O’Donnell and J. Wright, Efficient quantum tomography (2015), arXiv:1508.01907 [quant-ph] .
- J. Roffe, Contemporary Physics 60, 226–245 (2019).
- J. Dehaene and B. De Moor, Physical Review A 68, 10.1103/physreva.68.042318 (2003).
- M. M. Wilde, Preface to the second edition, in Quantum Information Theory (Cambridge University Press, 2017) p. xi–xii.