Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Relational Inductive Bias for Dimensional Abstraction in Neural Networks (2402.18426v1)

Published 28 Feb 2024 in cs.AI and cs.LG

Abstract: The human cognitive system exhibits remarkable flexibility and generalization capabilities, partly due to its ability to form low-dimensional, compositional representations of the environment. In contrast, standard neural network architectures often struggle with abstract reasoning tasks, overfitting, and requiring extensive data for training. This paper investigates the impact of the relational bottleneck -- a mechanism that focuses processing on relations among inputs -- on the learning of factorized representations conducive to compositional coding and the attendant flexibility of processing. We demonstrate that such a bottleneck not only improves generalization and learning efficiency, but also aligns network performance with human-like behavioral biases. Networks trained with the relational bottleneck developed orthogonal representations of feature dimensions latent in the dataset, reflecting the factorized structure thought to underlie human cognitive flexibility. Moreover, the relational network mimics human biases towards regularity without pre-specified symbolic primitives, suggesting that the bottleneck fosters the emergence of abstract representations that confer flexibility akin to symbols.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleAbstractors: Transformer Modules for Symbolic Message Passing and Relational Reasoning Abstractors: Transformer modules for symbolic message passing and relational reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.00195. \PrintBackRefs\CurrentBib
  2. \APACinsertmetastaranderson2013adaptive{APACrefauthors}Anderson, J\BPBIR.  \APACrefYear2013. \APACrefbtitleThe adaptive character of thought The adaptive character of thought. \APACaddressPublisherPsychology Press. \PrintBackRefs\CurrentBib
  3. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleMapping of a non-spatial dimension by the hippocampal–entorhinal circuit Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit.\BBCQ \APACjournalVolNumPagesNature5437647719–722. \PrintBackRefs\CurrentBib
  4. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleHigh-capacity flexible hippocampal associative and episodic memory enabled by prestructured”spatial”representations High-capacity flexible hippocampal associative and episodic memory enabled by prestructured”spatial”representations.\BBCQ \APACjournalVolNumPagesbioRxiv2023–11. \PrintBackRefs\CurrentBib
  5. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleOrganizing conceptual knowledge in humans with a gridlike code Organizing conceptual knowledge in humans with a gridlike code.\BBCQ \APACjournalVolNumPagesScience35262921464–1468. \PrintBackRefs\CurrentBib
  6. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSymbols and mental programs: a hypothesis about human singularity Symbols and mental programs: a hypothesis about human singularity.\BBCQ \APACjournalVolNumPagesTrends in Cognitive Sciences. \PrintBackRefs\CurrentBib
  7. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleEvidence for hierarchical cognitive control in the human cerebellum Evidence for hierarchical cognitive control in the human cerebellum.\BBCQ \APACjournalVolNumPagesCurrent Biology30101881–1892. \PrintBackRefs\CurrentBib
  8. \APACrefYearMonthDay1988. \BBOQ\APACrefatitleConnectionism and cognitive architecture: A critical analysis Connectionism and cognitive architecture: A critical analysis.\BBCQ \APACjournalVolNumPagesCognition281-23–71. \PrintBackRefs\CurrentBib
  9. \APACrefYearMonthDay2004. \BBOQ\APACrefatitleSpatial representation in the entorhinal cortex Spatial representation in the entorhinal cortex.\BBCQ \APACjournalVolNumPagesScience30556881258–1264. \PrintBackRefs\CurrentBib
  10. \APACrefYear2002. \APACrefbtitleNeural-symbolic learning systems: foundations and applications Neural-symbolic learning systems: foundations and applications. \APACaddressPublisherSpringer Science & Business Media. \PrintBackRefs\CurrentBib
  11. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleCategories and induction in young children Categories and induction in young children.\BBCQ \APACjournalVolNumPagesCognition233183–209. \PrintBackRefs\CurrentBib
  12. \APACrefYear2016. \APACrefbtitleDeep learning Deep learning. \APACaddressPublisherMIT press. \PrintBackRefs\CurrentBib
  13. \APACrefYearMonthDay2016. \BBOQ\APACrefatitlebeta-vae: Learning basic visual concepts with a constrained variational framework beta-vae: Learning basic visual concepts with a constrained variational framework.\BBCQ \BIn \APACrefbtitleInternational conference on learning representations. International conference on learning representations. \PrintBackRefs\CurrentBib
  14. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleOn neural architecture inductive biases for relational tasks On neural architecture inductive biases for relational tasks.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2206.05056. \PrintBackRefs\CurrentBib
  15. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleDisentangling by factorising Disentangling by factorising.\BBCQ \BIn \APACrefbtitleInternational Conference on Machine Learning International conference on machine learning (\BPGS 2649–2658). \PrintBackRefs\CurrentBib
  16. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleDeep learning Deep learning.\BBCQ \APACjournalVolNumPagesnature5217553436–444. \PrintBackRefs\CurrentBib
  17. \APACrefYearMonthDay1984. \BBOQ\APACrefatitleChildren’s sensitivity to constraints on word meaning: Taxonomic versus thematic relations Children’s sensitivity to constraints on word meaning: Taxonomic versus thematic relations.\BBCQ \APACjournalVolNumPagesCognitive psychology1611–27. \PrintBackRefs\CurrentBib
  18. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleThe appeal of parallel distributed processing The appeal of parallel distributed processing.\BBCQ \APACjournalVolNumPagesMIT Press, Cambridge MA344. \PrintBackRefs\CurrentBib
  19. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContinuous manipulation of mental representations is compromised in cerebellar degeneration Continuous manipulation of mental representations is compromised in cerebellar degeneration.\BBCQ \APACjournalVolNumPagesBrain145124246–4263. \PrintBackRefs\CurrentBib
  20. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleComparing Humans, GPT-4, and GPT-4V on abstraction and reasoning tasks Comparing humans, gpt-4, and gpt-4v on abstraction and reasoning tasks.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2311.09247. \PrintBackRefs\CurrentBib
  21. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleHuman-level control through deep reinforcement learning Human-level control through deep reinforcement learning.\BBCQ \APACjournalVolNumPagesnature5187540529–533. \PrintBackRefs\CurrentBib
  22. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLearning to reason over visual objects Learning to reason over visual objects.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.02260. \PrintBackRefs\CurrentBib
  23. \APACinsertmetastarnewell1994unified{APACrefauthors}Newell, A.  \APACrefYear1994. \APACrefbtitleUnified theories of cognition Unified theories of cognition. \APACaddressPublisherHarvard University Press. \PrintBackRefs\CurrentBib
  24. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleModeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach.\BBCQ \APACjournalVolNumPagesPsychological review1104611. \PrintBackRefs\CurrentBib
  25. \APACrefYearMonthDay1994. \BBOQ\APACrefatitleHippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off.\BBCQ \APACjournalVolNumPagesHippocampus46661–682. \PrintBackRefs\CurrentBib
  26. \APACrefYearMonthDay2006. \BBOQ\APACrefatitleCerebellar damage produces selective deficits in verbal working memory Cerebellar damage produces selective deficits in verbal working memory.\BBCQ \APACjournalVolNumPagesBrain1292306–320. \PrintBackRefs\CurrentBib
  27. \APACrefYear2004. \APACrefbtitleSemantic cognition: A parallel distributed processing approach Semantic cognition: A parallel distributed processing approach. \APACaddressPublisherMIT press. \PrintBackRefs\CurrentBib
  28. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleOn learning the past tenses of English verbs On learning the past tenses of english verbs.\BBCQ \PrintBackRefs\CurrentBib
  29. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA language of thought for the mental representation of geometric shapes A language of thought for the mental representation of geometric shapes.\BBCQ \APACjournalVolNumPagesCognitive Psychology139101527. \PrintBackRefs\CurrentBib
  30. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleSensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity.\BBCQ \APACjournalVolNumPagesProceedings of the National Academy of Sciences11816e2023123118. \PrintBackRefs\CurrentBib
  31. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleDropout: a simple way to prevent neural networks from overfitting Dropout: a simple way to prevent neural networks from overfitting.\BBCQ \APACjournalVolNumPagesThe journal of machine learning research1511929–1958. \PrintBackRefs\CurrentBib
  32. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleDisentangled representation learning gan for pose-invariant face recognition Disentangled representation learning gan for pose-invariant face recognition.\BBCQ \BIn \APACrefbtitleProceedings of the IEEE conference on computer vision and pattern recognition Proceedings of the ieee conference on computer vision and pattern recognition (\BPGS 1415–1424). \PrintBackRefs\CurrentBib
  33. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleEmergent analogical reasoning in large language models Emergent analogical reasoning in large language models.\BBCQ \APACjournalVolNumPagesNature Human Behaviour791526–1541. \PrintBackRefs\CurrentBib
  34. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleThe relational bottleneck as an inductive bias for efficient abstraction The relational bottleneck as an inductive bias for efficient abstraction.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2309.06629. \PrintBackRefs\CurrentBib
  35. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleEmergent symbols through binding in external memory Emergent symbols through binding in external memory.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2012.14601. \PrintBackRefs\CurrentBib
  36. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleThe Tolman-Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation The tolman-eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation.\BBCQ \APACjournalVolNumPagesCell18351249–1263. \PrintBackRefs\CurrentBib
Citations (1)

Summary

We haven't generated a summary for this paper yet.