Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum approximate optimization algorithm with random and subgraph phase operators (2402.18412v3)

Published 28 Feb 2024 in quant-ph and cs.ET

Abstract: The quantum approximate optimization algorithm (QAOA) is a promising quantum algorithm that can be used to approximately solve combinatorial optimization problems. The usual QAOA ansatz consists of an alternating application of the cost and mixer Hamiltonians. In this work, we study how using Hamiltonians other than the usual cost Hamiltonian, dubbed custom phase operators, can affect the performance of QAOA. We derive an expected value formula for QAOA with custom phase operators at $p = 1$ and show numerically that some of these custom phase operators can achieve higher approximation ratio than the original algorithm implementation. Out of all the graphs tested at $p=1$, 0.036\% of the random custom phase operators, 75.9\% of the subgraph custom phase operators, 95.1\% of the triangle-removed custom phase operators, and 93.9\% of the maximal degree edge-removed custom phase operators have a higher approximation ratio than the original QAOA implementation. Furthermore, we numerically simulate these phase operators for $p=2$ and $p=3$ levels of QAOA and find that there exist a large number of subgraph, triangle-removed, and maximal degree edge-removed custom phase operators that have a higher approximation ratio than QAOA at the same depth. These findings open up the question of whether better phase operators can be designed to further improve the performance of QAOA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” 2014. [Online]. Available: https://arxiv.org/abs/1411.4028
  2. A. Ozaeta, W. van Dam, and P. L. McMahon, “Expectation values from the single-layer quantum approximate optimization algorithm on ising problems,” Quantum Science and Technology, vol. 7, no. 4, p. 045036, sep 2022. [Online]. Available: https://doi.org/10.1088%2F2058-9565%2Fac9013
  3. R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw, T. S. Humble, and G. Siopsis, “Impact of graph structures for qaoa on maxcut,” Quantum Information Processing, vol. 20, no. 9, pp. 1–21, 2021.
  4. E. Farhi, D. Gamarnik, and S. Gutmann, “The quantum approximate optimization algorithm needs to see the whole graph: Worst case examples,” arXiv preprint arXiv:2005.08747, 2020.
  5. J. Wurtz and D. Lykov, “The fixed angle conjecture for qaoa on regular maxcut graphs,” 2021. [Online]. Available: https://arxiv.org/abs/2107.00677
  6. G. G. Guerreschi and A. Y. Matsuura, “QAOA for max-cut requires hundreds of qubits for quantum speed-up,” Scientific Reports, vol. 9, no. 1, may 2019. [Online]. Available: https://doi.org/10.1038%2Fs41598-019-43176-9
  7. Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, “Quantum approximate optimization algorithm for maxcut: A fermionic view,” Physical Review A, vol. 97, no. 2, p. 022304, 2018.
  8. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices,” Physical Review X, vol. 10, no. 2, p. 021067, 2020.
  9. M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo et al., “Quantum approximate optimization of non-planar graph problems on a planar superconducting processor,” Nature Physics, vol. 17, no. 3, pp. 332–336, 2021.
  10. N. Earnest, C. Tornow, and D. J. Egger, “Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware,” Physical Review Research, vol. 3, no. 4, p. 043088, 2021.
  11. R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble, and G. Siopsis, “Multi-angle quantum approximate optimization algorithm,” Scientific Reports, vol. 12, no. 1, pp. 1–10, 2022.
  12. J. Wurtz and P. J. Love, “Classically optimal variational quantum algorithms,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–7, 2021.
  13. V. Vijendran, A. Das, D. E. Koh, S. M. Assad, and P. K. Lam, “An expressive ansatz for low-depth quantum optimisation,” arXiv preprint arXiv:2302.04479, 2023.
  14. K. Shi, R. Herrman, R. Shaydulin, S. Chakrabarti, M. Pistoia, and J. Larson, “Multi-angle qaoa does not always need all its angles,” arXiv preprint arXiv:2209.11839, 2022.
  15. Z. Zhou, Y. Du, X. Tian, and D. Tao, “Qaoa-in-qaoa: solving large-scale maxcut problems on small quantum machines,” Physical Review Applied, vol. 19, no. 2, p. 024027, 2023.
  16. J. Li, M. Alam, and S. Ghosh, “Large-scale quantum approximate optimization via divide-and-conquer,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.
  17. M. Ponce, R. Herrman, P. C. Lotshaw, S. Powers, G. Siopsis, T. Humble, and J. Ostrowski, “Graph decomposition techniques for solving combinatorial optimization problems with variational quantum algorithms,” arXiv preprint arXiv:2306.00494, 2023.
  18. Z. Wang, N. C. Rubin, J. M. Dominy, and E. G. Rieffel, “X y mixers: Analytical and numerical results for the quantum alternating operator ansatz,” Physical Review A, vol. 101, no. 1, p. 012320, 2020.
  19. A. Bärtschi and S. Eidenbenz, “Grover mixers for qaoa: Shifting complexity from mixer design to state preparation,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).   IEEE, 2020, pp. 72–82.
  20. E. Farhi, D. Gamarnik, and S. Gutmann, “The quantum approximate optimization algorithm needs to see the whole graph: A typical case,” arXiv preprint arXiv:2004.09002, 2020.
  21. J. Wurtz and P. Love, “Maxcut quantum approximate optimization algorithm performance guarantees for p>1𝑝1p>1italic_p > 1,” Physical Review A, vol. 103, no. 4, p. 042612, 2021.
  22. S. Hadfield, “Quantum algorithms for scientific computing and approximate optimization,” arXiv preprint arXiv:1805.03265, 2018.
  23. https://github.com/GaidaiIgor/MA-QAOA.
  24. A. Wilkie, “Random circuit qaoa,” 2024. [Online]. Available: https://github.com/Vilcius/MA-QAOA
  25. I. Gaidai and R. Herrman, “Performance analysis of multi-angle qaoa for p>1𝑝1p>1italic_p > 1,” arXiv e-prints, pp. arXiv–2312, 2023.
  26. S. Upadhyay and S. Ghosh, “Obfuscating quantum hybrid-classical algorithms for security and privacy,” arXiv preprint arXiv:2305.02379, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.