Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Probabilistic Motion Model for Skid-Steer Wheeled Mobile Robot Navigation on Off-Road Terrains (2402.18065v2)

Published 28 Feb 2024 in cs.RO

Abstract: Skid-Steer Wheeled Mobile Robots (SSWMRs) are increasingly being used for off-road autonomy applications. When turning at high speeds, these robots tend to undergo significant skidding and slipping. In this work, using Gaussian Process Regression (GPR) and Sigma-Point Transforms, we estimate the non-linear effects of tire-terrain interaction on robot velocities in a probabilistic fashion. Using the mean estimates from GPR, we propose a data-driven dynamic motion model that is more accurate at predicting future robot poses than conventional kinematic motion models. By efficiently solving a convex optimization problem based on the history of past robot motion, the GPR augmented motion model generalizes to previously unseen terrain conditions. The output distribution from the proposed motion model can be used for local motion planning approaches, such as stochastic model predictive control, leveraging model uncertainty to make safe decisions. We validate our work on a benchmark real-world multi-terrain SSWMR dataset. Our results show that the model generalizes to three different terrains while significantly reducing errors in linear and angular motion predictions. As shown in the attached video, we perform a separate set of experiments on a physical robot to demonstrate the robustness of the proposed algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. R. Khan, F. M. Malik, A. Raza, and N. Mazhar, “Comprehensive study of skid-steer wheeled mobile robots: Development and challenges,” Industrial Robot: the international journal of robotics research and application, vol. 48, no. 1, pp. 142–156, 2021.
  2. C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained learning-based nmpc enabling reliable mobile robot path tracking,” The International Journal of Robotics Research, vol. 35, no. 13, pp. 1547–1563, 2016.
  3. L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive control using gaussian process regression,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2019.
  4. S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.
  5. R. Brach and M. Brach, “The tire-force ellipse (friction ellipse) and tire characteristics,” SAE Technical Paper, Tech. Rep., 2011.
  6. R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” IEEE transactions on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
  7. D. Wang and C. B. Low, “Modeling and analysis of skidding and slipping in wheeled mobile robots: Control design perspective,” IEEE Transactions on Robotics, vol. 24, no. 3, pp. 676–687, 2008.
  8. E. Martínez-García and R. Torres-Córdoba, “4wd skid-steer trajectory control of a rover with spring-based suspension analysis: direct and inverse kinematic parameters solution,” in Intelligent Robotics and Applications: Third International Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010. Proceedings, Part I 3.   Springer, 2010, pp. 453–464.
  9. D. Baril, V. Grondin, S.-P. Deschênes, J. Laconte, M. Vaidis, V. Kubelka, A. Gallant, P. Giguere, and F. Pomerleau, “Evaluation of skid-steering kinematic models for subarctic environments,” in 2020 17th Conference on Computer and Robot Vision (CRV).   IEEE, 2020, pp. 198–205.
  10. W. Yu, O. Chuy, E. G. Collins, and P. Hollis, “Dynamic modeling of a skid-steered wheeled vehicle with experimental verification,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2009, pp. 4212–4219.
  11. K. Kozłowski and D. Pazderski, “Modeling and control of a 4-wheel skid-steering mobile robot,” International journal of applied mathematics and computer science, vol. 14, no. 4, pp. 477–496, 2004.
  12. N. Seegmiller and A. Kelly, “Modular dynamic simulation of wheeled mobile robots,” in Field and Service Robotics: Results of the 9th International Conference.   Springer, 2015, pp. 75–89.
  13. S. Rabiee and J. Biswas, “A friction-based kinematic model for skid-steer wheeled mobile robots,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8563–8569.
  14. J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson, “Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration,” Advances in neural information processing systems, vol. 31, 2018.
  15. G. Huskić, S. Buck, M. Herrb, S. Lacroix, and A. Zell, “High-speed path following control of skid-steered vehicles,” The International Journal of Robotics Research, vol. 38, no. 9, pp. 1124–1148, 2019.
  16. J. Wang, M. T. Fader, and J. A. Marshall, “Learning-based model predictive control for improved mobile robot path following using gaussian processes and feedback linearization,” Journal of Field Robotics, 2023.
  17. C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Trajectory modification considering dynamic constraints of autonomous robots,” in ROBOTIK 2012; 7th German Conference on Robotics.   VDE, 2012, pp. 1–6.
  18. X. Cai, M. Everett, L. Sharma, P. R. Osteen, and J. P. How, “Probabilistic traversability model for risk-aware motion planning in off-road environments,” arXiv preprint arXiv:2210.00153, 2022.
  19. T. Nagy, A. Amine, T. X. Nghiem, U. Rosolia, Z. Zang, and R. Mangharam, “Ensemble gaussian processes for adaptive autonomous driving on multi-friction surfaces,” arXiv preprint arXiv:2303.13694, 2023.
  20. C. De La Cruz and R. Carelli, “Dynamic modeling and centralized formation control of mobile robots,” in IECON 2006-32nd annual conference on IEEE industrial electronics.   IEEE, 2006, pp. 3880–3885.
  21. Á. J. Prado, M. Torres-Torriti, J. Yuz, and F. A. Cheein, “Tube-based nonlinear model predictive control for autonomous skid-steer mobile robots with tire–terrain interactions,” Control Engineering Practice, vol. 101, p. 104451, 2020.
  22. F. Reyes and R. Kelly, “On parameter identification of robot manipulators,” in Proceedings of International Conference on Robotics and Automation, vol. 3.   IEEE, 1997, pp. 1910–1915.
  23. L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious nmpc with gaussian process dynamics for autonomous miniature race cars,” in 2018 European Control Conference (ECC).   IEEE, 2018, pp. 1341–1348.
  24. R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren, A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados—a modular open-source framework for fast embedded optimal control,” Mathematical Programming Computation, vol. 14, no. 1, pp. 147–183, 2022.
  25. A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “Forces nlp: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs,” International Journal of Control, vol. 93, no. 1, pp. 13–29, 2020.
  26. M. Kuss, “Gaussian process models for robust regression, classification, and reinforcement learning,” Ph.D. dissertation, Technische Universität Darmstadt, 2006.
  27. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., “Scipy 1.0: fundamental algorithms for scientific computing in python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.
  28. G. Pleiss, J. Gardner, K. Weinberger, and A. G. Wilson, “Constant-time predictive distributions for gaussian processes,” in International Conference on Machine Learning.   PMLR, 2018, pp. 4114–4123.
  29. J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy, S. Amarasinghe, and F. Durand, “Halide: Decoupling algorithms from schedules for high-performance image processing,” Communications of the ACM, vol. 61, no. 1, pp. 106–115, 2017.
  30. Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig, “Safe-control-gym: A unified benchmark suite for safe learning-based control and reinforcement learning,” arXiv preprint arXiv:2109.06325, 2021.
  31. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp: An operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.
  32. S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling language for convex optimization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2909–2913, 2016.
  33. D. Chindamo, B. Lenzo, and M. Gadola, “On the vehicle sideslip angle estimation: a literature review of methods, models, and innovations,” applied sciences, vol. 8, no. 3, p. 355, 2018.
  34. A. Trivedi, S. Bazzi, M. Zolotas, and T. Padır, “Probabilistic dynamic modeling and control for skid-steered mobile robots in off-road environments,” in 2023 IEEE International Conference on Assured Autonomy (ICAA).   IEEE, 2023, pp. 57–60.
Citations (3)

Summary

We haven't generated a summary for this paper yet.