Characterization of the Astrophysical Diffuse Neutrino Flux using Starting Track Events in IceCube (2402.18026v1)
Abstract: A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of $\gamma = 2.58 {+0.10}_{-0.09}$ and per-flavor normalization of $\phi{\mathrm{Astro}}_{\mathrm{per-flavor}} = 1.68 {+0.19}_{-0.22} \times 10{-18} \times \mathrm{GeV}{-1} \mathrm{cm}{-2} \mathrm{s}{-1} \mathrm{sr}{-1}$ (at 100 TeV). The sensitive energy range for this dataset is 3 - 550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff.
- M. G. Aartsen et al. (IceCube), Science 342, 1242856 (2013a).
- M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 111, 021103 (2013b).
- M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 113, 101101 (2014a).
- R. L. Workman and Others (Particle Data Group), PTEP 2022, 083C01 (2022).
- E. Fermi, Phys. Rev. 75, 1169 (1949).
- G. F. Krymskii, Akademiia Nauk SSSR Doklady 234, 1306 (1977).
- A. R. Bell, Monthly Notices of the Royal Astronomical Society 182, 147 (1978).
- J. K. Becker, Phys. Rept. 458, 173 (2008).
- T. Kashti and E. Waxman, Phys. Rev. Lett. 95, 181101 (2005).
- K. Z. Jero, A Search for Starting Tracks in IceCube: A New Window for Detecting Astrophysical Neutrinos, Ph.D. thesis, University of Wisconsin, Madison (2017).
- M. Silva and S. Mancina (IceCube), PoS ICRC2019, 1010 (2020).
- S. Mancina and M. Silva (IceCube), PoS ICRC2019, 954 (2020).
- M. Silva (IceCube), JINST 16 (09), C09015.
- S. Mancina and M. Silva (IceCube), JINST 16 (09), C09024.
- R. Abbasi et al. (IceCube), PoS ICRC2021, 1130 (2021a).
- M. Silva, S. Mancina, and J. Osborn (IceCube), PoS ICRC2023, 1008 (2023).
- S. L. Mancina, Astrophysical Neutrino Source Searches Using IceCube Starting Tracks, Ph.D. thesis, University of Wisconsin, Madison (2022).
- M. Silva, Precision Measurement of the Astrophysical Neutrino Flux using Starting Track Events in IceCube, Ph.D. thesis, University of Wisconsin, Madison (2023).
- R. Abbasi et al. (IceCube) (2024), submission to ApJ in progress.
- M. G. Aartsen et al. (IceCube), Science 361, 147 (2018a).
- R. Abbasi et al. (IceCube), Science 378, 538 (2022a).
- R. Abbasi et al. (IceCube), Science 380, 1338 (2023a).
- K. Murase and E. Waxman, Phys. Rev. D 94, 103006 (2016).
- F. Capel, D. J. Mortlock, and C. Finley, Phys. Rev. D 101, 123017 (2020).
- R. Abbasi et al. (IceCube), Astrophys. J. 951, 45 (2023b).
- K. Fang, J. S. Gallagher, and F. Halzen, Astrophys. J. 933, 190 (2022).
- K. Murase, D. Guetta, and M. Ahlers, Phys. Rev. Lett. 116, 071101 (2016).
- A. Loeb and E. Waxman, Journal of Cosmology and Astroparticle Physics 2006 (05), 003.
- K. Murase, S. Inoue, and S. Nagataki, Astrophys. J. Lett. 689, L105 (2008).
- V. S. Berezinsky and A. A. Mikhailov, in Possible Regions of Origin of Ultrahigh Energy Cosmic Rays in Our Galaxy, International Cosmic Ray Conference, Vol. 2 (1987) p. 54.
- D. Eichler, Astrophys. J. 232, 106 (1979).
- D. Kazanas and D. C. Ellison, Astrophys. J. 304, 178 (1986).
- M. C. Begelman, B. Rudak, and M. Sikora, Astrophys. J. 362, 38 (1990).
- F. Haardt and L. Maraschi, Astrophys. J. Lett. 380, L51 (1991).
- A. P. Szabo and R. J. Protheroe, Astropart. Phys. 2, 375 (1994).
- J. Alvarez-Muniz and P. Meszaros, Phys. Rev. D 70, 123001 (2004).
- A. Cuoco and S. Hannestad, Phys. Rev. D 78, 023007 (2008).
- H. B. J. Koers and P. Tinyakov, Phys. Rev. D 78, 083009 (2008).
- K. Murase, in Neutrino Astronomy: Current Status, Future Prospects, edited by T. Gaisser and A. Karle (World Scientific Publishing, 2017) pp. 15–31.
- S. Razzaque, P. Mészáros, and E. Waxman, Phys. Rev. Lett. 93, 181101 (2004).
- S. Ando and J. F. Beacom, Phys. Rev. Lett. 95, 061103 (2005).
- H. B. J. Koers and R. A. M. J. Wijers, (2007), arXiv:0711.4791 [astro-ph] .
- S. R. Klein, R. E. Mikkelsen, and J. Becker Tjus, Astrophys. J. 779, 106 (2013).
- K. Murase, M. Ahlers, and B. C. Lacki, Phys. Rev. D 88, 121301 (2013).
- M. Aartsen et al., Astroparticle Physics 78, 1 (2016).
- M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 125, 121104 (2020a).
- R. Abbasi et al. (IceCube), Astrophys. J. 928, 50 (2022b).
- R. Abbasi et al. (IceCube), Phys. Rev. D 104, 022002 (2021b).
- M. G. Aartsen et al. (IceCube), Phys. Rev. D 91, 022001 (2015).
- M. G. Aartsen et al. (IceCube), Phys. Rev. D 99, 032004 (2019a).
- M. G. Aartsen et al. (IceCube), JINST 12 (03), P03012.
- R. Abbasi et al., NIM-A 618, 139 (2010).
- R. Abbasi et al., NIM-A 601, 294 (2009).
- P. A. Cherenkov, Dokl. Akad. Nauk SSSR 2, 451 (1934).
- R. Abbasi et al. (IceCube), Astropart. Phys. 35, 615 (2012).
- T. K. Gaisser, T. Stanev, and S. Tilav, Front. Phys. (Beijing) 8, 748 (2013a).
- A. Cooper-Sarkar, P. Mertsch, and S. Sarkar, Journal of High Energy Physics 2011, 42 (2011).
- A. M. Dziewonski and D. L. Anderson, Physics of the Earth and Planetary Interiors 25, 297 (1981).
- A. Gazizov and M. Kowalski, Computer Physics Communications 172, 203 (2005).
- J. van Santen, Neutrino Interactions in IceCube above 1 TeV Constraints on Atmospheric Charmed-Meson Production and Investigation of the Astrophysical Neutrino Flux with 2 Years of IceCube Data taken 2010–2012, Ph.D. thesis, University of Wisconsin, Madison (2014).
- M. P. Kowalski, Search for neutrino-induced cascades with the AMANDA-II detector, Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I (2004).
- M. Ackermann et al., Journal of Geophysical Research: Atmospheres 111 (2006).
- M. G. Aartsen et al. (IceCube), NIM-A 711, 73 (2013c).
- V. J. Stenger, in Track Fitting For Dumand-II Octagon Array (technical report) (University of Hawaii at Manoa, 1990).
- M. G. Aartsen et al. (IceCube), NIM-A 736, 143 (2014b).
- J. Ahrens et al., NIM-A 524, 169 (2004).
- M. G. Aartsen et al., JINST 9 (03), P03009.
- L. Breiman, Machine Learning 45, 5 (2001).
- P. Geurts, D. Ernst, and L. Wehenkel, Mach. Learn. 63, 3–42 (2006).
- R. Abbasi et al., NIM-A 703, 190 (2013).
- M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 124, 051103 (2020b).
- M. G. Aartsen et al. (IceCube), JINST 15 (06), P06032.
- M. Ackermann et al. (IceCube), in 30th International Cosmic Ray Conference (2007).
- F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).
- H. Dembinski et al., scikit-hep/iminuit: v2.17.0, Zenodo (2022).
- S. S. Wilks, The Annals of Mathematical Statistics 9, 60 (1938).
- G. Collin, An estimation of systematics for up-going atmospheric muon neutrino flux at the south pole., MIT Libraries: DSpace@MIT (2015), dataset release.
- T. K. Gaisser, T. Stanev, and S. Tilav, Front. Phys. (Beijing) 8, 748 (2013b).
- P. Askebjer et al., Appl. Opt. 36, 4168 (1997).
- P. B. Price and L. Bergström, Appl. Opt. 36, 4181 (1997).
- P. B. Price, K. Woschnagg, and D. Chirkin, Geophysical Research Letters 27, 2129 (2000).
- M. G. Aartsen et al., Journal of Glaciology 59, 1117–1128 (2013d).
- R. Abbasi et al. (IceCube), Phys. Rev. D 79, 062001 (2009).
- Rongen, Martin, EPJ Web of Conferences 116, 06011 (2016).
- S. Fiedlschuster, The Effect of Hole Ice on the Propagation and Detection of Light in IceCube, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2019).
- R. Abbasi et al. ((IceCube Collaboration)*, IceCube), Phys. Rev. D 108, 012014 (2023c).
- D. Tosi and C. Wendt (IceCube), PoS TIPP2014, 157 (2014).
- S. Baker and R. D. Cousins, NIM-A 221, 437 (1984).
- J. C. Spall, Journal of Computational and Graphical Statistics 14, 889 (2005).
- J. C. Spall, in 2008 American Control Conference (2008) pp. 2395–2400.
- S. Das, J. C. Spall, and R. Ghanem, Computational Statistics & Data Analysis 54, 272 (2010).
- S. L. Glashow, Phys. Rev. 118, 316 (1960).
- M. G. Aartsen et al. (IceCube), Nature 591, 220 (2021), [Erratum: Nature 592, E11 (2021)].
- A. Domínguez et al., Monthly Notices of the Royal Astronomical Society 410, 2556 (2011).
- T. K. Gaisser, Cosmic rays and particle physics. (Cambridge University Press, 1990).
- M. Ackermann et al. (Fermi-LAT), Astrophys. J. 799, 86 (2015).
- M. Ackermann et al. (Fermi-LAT), Phys. Rev. Lett. 116, 151105 (2016).
- A. Capanema, A. Esmaili, and P. D. Serpico, Journal of Cosmology and Astroparticle Physics 2021 (02), 037.
- A. Albert et al., Astrophys. J. Lett. 868, L20 (2018).
- M. G. Aartsen et al., Astrophys. J. 849, 67 (2017b).
- M. G. Aartsen et al., Astrophys. J. 886, 12 (2019b).
- M. Ackermann et al., Astrophys. J. Supplement Series 203, 4 (2012a).
- M. Ackermann et al., Astrophys. J. 750, 3 (2012b).
- M. G. Aartsen et al. (IceCube), Astrophys. J. 849, 67 (2017c).
- R. Enberg, M. H. Reno, and I. Sarcevic, Phys. Rev. D 78, 043005 (2008).
- J. L. Kelley et al. (IceCube), AIP Conference Proceedings 1630, 154 (2014).