Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-stage Quantum Estimation and the Asymptotics of Quantum-enhanced Transmittance Sensing (2402.17922v2)

Published 27 Feb 2024 in quant-ph, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We consider estimation of a single unknown parameter embedded in a quantum state. Quantum Cram\'er-Rao bound (QCRB) is the ultimate limit of the mean squared error for any unbiased estimator. While it can be achieved asymptotically for a large number of quantum state copies, the measurement required often depends on the true value of the parameter of interest. Prior work addresses this paradox using a two-stage approach: in the first stage, a preliminary estimate is obtained by applying, on a vanishing fraction of quantum state copies, a sub-optimal measurement that does not depend on the parameter of interest. In the second stage, the preliminary estimate is used to construct the QCRB-achieving measurement that is applied to the remaining quantum state copies. This is akin to two-step estimators for classical problems with nuisance parameters. Unfortunately, the original analysis imposes conditions that severely restrict the class of classical estimators applied to the quantum measurement outcomes, hindering applications of this method. We relax these conditions to substantially broaden the class of usable estimators for single-parameter problems at the cost of slightly weakening the asymptotic properties of the two-stage method. We also account for nuisance parameters. We apply our results to obtain the asymptotics of quantum-enhanced transmittance sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. H. Nagaoka, “An asymptotically efficient estimator for a one-dimensional parametric model of quantum statistical operators,” in Proc. IEEE Int. Symp. Inf. Theory, vol. 198, 1988.
  2. A. Fujiwara, “Strong consistency and asymptotic efficiency for adaptive quantum estimation problems,” J. Phys. A: Math. Gen., vol. 39, no. 40, p. 12489, 2006.
  3. R. D. Gill and S. Massar, “State estimation for large ensembles,” Phys. Rev. A, vol. 61, p. 042312, Mar. 2000.
  4. M. Hayashi and K. Matsumoto, “Statistical model with measurement degree of freedom and quantum physics,” in Asymptotic theory of quantum statistical inference: selected papers.   World Scientific, 2005, pp. 162–169.
  5. W. K. Newey and D. McFadden, “Chapter 36 large sample estimation and hypothesis testing,” in Handbook of Econometrics, ser. Handbooks in Economics.   Elsevier, 1994, vol. 4, pp. 2111–2245.
  6. Z. Gong, C. N. Gagatsos, S. Guha, and B. A. Bash, “Fundamental limits of loss sensing over bosonic channels,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), virtual, Jul. 2021.
  7. Z. Gong, N. Rodriguez, C. N. Gagatsos, S. Guha, and B. A. Bash, “Quantum-enhanced transmittance sensing,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 2, pp. 473–490, 2023.
  8. H. Nagaoka, “A new approach to Cramér-Rao bounds for quantum state estimation,” in Asymptotic Theory of Quantum Statistical Inference: Selected Papers.   World Scientific, 2005, pp. 100–112.
  9. H. Nagaoka, “On the parameter estimation problem for quantum statistical models,” in Asymptotic Theory of Quantum Statistical Inference: Selected Papers.   World Scientific, 2005, pp. 125–132.
  10. R. Jonsson and R. D. Candia, “Gaussian quantum estimation of the loss parameter in a thermal environment,” J. Phys. A: Math. Theor., vol. 55, no. 38, p. 385301, Aug. 2022.
  11. R. Nair and M. Gu, “Fundamental limits of quantum illumination,” Optica, vol. 7, no. 7, pp. 771–774, Jul. 2020.
  12. S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science, vol. 321, no. 5895, pp. 1463–1465, 2008.
  13. S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with gaussian states,” Phys. Rev. Lett., vol. 101, p. 253601, Dec. 2008.
  14. S. Guha and B. I. Erkmen, “Gaussian-state quantum-illumination receivers for target detection,” Phys. Rev. A, vol. 80, p. 052310, Nov. 2009.
  15. J. H. Shapiro, “The quantum illumination story,” IEEE Aerosp. Electron. Syst. Mag., vol. 35, no. 4, pp. 8–20, 2020.
  16. M. Sanz, U. Las Heras, J. J. García-Ripoll, E. Solano, and R. Di Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett., vol. 118, p. 070803, Feb. 2017.
  17. T. Tan, K. K. Lee, A. Ashok, A. Datta, and B. A. Bash, “Robust adaptive quantum-limited super-resolution imaging,” in Proc. Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, Nov. 2022.
  18. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys., vol. 84, pp. 621–669, May 2012.
  19. S. Guha, “Classical capacity of the free-space quantum-optical channel,” Master’s thesis, Massachusetts Institute of Technology, 2004.
  20. S.-H. Chang, P. C. Cosman, and L. B. Milstein, “Chernoff-type bounds for the Gaussian error function,” IEEE Trans. Commun., vol. 59, no. 11, pp. 2939–2944, 2011.
  21. P. J. Huber et al., “The behavior of maximum likelihood estimates under nonstandard conditions,” in Proc. 5th Berkeley Symp. Math. Statist. Prob., vol. 5, no. 1, Berkeley, CA, USA, 1967, pp. 221–233.
  22. G. Tauchen, “Diagnostic testing and evaluation of maximum likelihood models,” J. Econom., vol. 30, no. 1-2, pp. 415–443, 1985.
  23. User “stevecheng (10074)”, “Differentiation under the integral sign,” https://planetmath.org/differentiationundertheintegralsign, Mar. 23, 2013, (accessed 24 February 2024).
  24. E. Talvila, “Necessary and sufficient conditions for differentiating under the integral sign,” Am. Math. Mon., vol. 108, no. 6, pp. 544–548, 2001.
  25. L. Mirsky, “A trace inequality of john von neumann,” Monatshefte für mathematik, vol. 79, no. 4, pp. 303–306, 1975.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com