Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Anchor Selection and Real-Time Pose Prediction for Ultra-wideband Tagless Gate (2402.17778v1)

Published 22 Feb 2024 in eess.SP, cs.AI, cs.SY, and eess.SY

Abstract: Ultra-wideband (UWB) is emerging as a promising solution that can realize proximity services, such as UWB tagless gate (UTG), thanks to centimeter-level localization accuracy based on two different ranging methods such as downlink time-difference of arrival (DL-TDoA) and double-sided two-way ranging (DS-TWR). The UTG is a UWB-based proximity service that provides a seamless gate pass system without requiring real-time mobile device (MD) tapping. The location of MD is calculated using DL-TDoA, and the MD communicates with the nearest UTG using DS-TWR to open the gate. Therefore, the knowledge about the exact location of MD is the main challenge of UTG, and hence we provide the solutions for both DL-TDoA and DS-TWR. In this paper, we propose dynamic anchor selection for extremely accurate DL-TDoA localization and pose prediction for DS-TWR, called DynaPose. The pose is defined as the actual location of MD on the human body, which affects the localization accuracy. DynaPose is based on line-of-sight (LOS) and non-LOS (NLOS) classification using deep learning for anchor selection and pose prediction. Deep learning models use the UWB channel impulse response and the inertial measurement unit embedded in the smartphone. DynaPose is implemented on Samsung Galaxy Note20 Ultra and Qorvo UWB board to show the feasibility and applicability. DynaPose achieves a LOS/NLOS classification accuracy of 0.984, 62% higher DL-TDoA localization accuracy, and ultimately detects four different poses with an accuracy of 0.961 in real-time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Choi, G. Lee, S. Choi, and S. Bahk, “Smartphone based Indoor Path Estimation and Localization without Human Intervention,” IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 681–695, 2020.
  2. J. Choi, M. Lee, T. Kim, and H. Jun, “Wand: Remote Control System based on Ultra-wideband Localization using Smartphone,” in Proc. IEEE GlobeCom, 2022.
  3. UWB Minutes: Access Control. [Online]. Available: https://www.nxp.com/video/uwb-minutes-uwb-for-access-control:UWB-MINUTES-ACCESS-CONTROL
  4. NXP Collaborates with ING and Samsung to Pilot Industry’s First UWB-Based Peer-to-Peer Payment Application. [Online]. Available: https://www.nxp.com/company/about-nxp/newsroom:NEWSROOM
  5. Car Connectivity Consortium. [Online]. Available: https://carconnectivity.org/
  6. What’s the deal with Ultra Wideband. [Online]. Available: https://www.bmw.com/en/innovation/bmw-digital-key-plus-ultra-wideband.html
  7. B. Van Herbruggen, J. Fontaine, and E. De Poorter, “Anchor Pair Selection for Error Correction in Time Difference of Arrival (TDoA) Ultra Wideband (UWB) Positioning Systems,” in Proc. IEEE IPIN, 2021.
  8. B. Großwindhager, M. Rath, J. Kulmer, M. S. Bakr, C. A. Boano, K. Witrisal, and K. Römer, “SALMA: UWB-based Single-anchor Localization System using Multipath Assistance,” in Proc. ACM SenSys, 2018.
  9. MDEK1001 Ultra-Wideband (UWB) Transceiver Development Kit. [Online]. Available: https://www.qorvo.com/products/p/MDEK1001
  10. K. Bregar, A. Hrovat, and M. Mohorcic, “NLOS Channel Detection with Multilayer Perceptron in Low-Rate Personal Area Networks for Indoor Localization Accuracy Improvement,” in Proc. IPSSC, 2016.
  11. Y. Shu, K. G. Shin, T. He, and J. Chen, “Last-mile Navigation using Smartphones,” in Proc. ACM MobiCom, 2015.
  12. R. L. Graham, “An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set,” Info. Proc. Lett., 1972.
  13. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural computation, 1997.
  14. Basic Application using the UWB Features of the DWM1001C. [Online]. Available: https://github.com/Decawave/dwm1001-examples
  15. DW1000 USER MANUAL (PDF). [Online]. Available: https://www.qorvo.com/products/d/da007967/
  16. Embedded Studio Downloads. [Online]. Available: https://www.segger.com/downloads/embedded-studio/
  17. C. Jiang, J. Shen, S. Chen, Y. Chen, D. Liu, and Y. Bo, “UWB NLOS/LOS Classification Using Deep Learning Method,” IEEE Communications Letters, 2020.
  18. B. Yang, J. Li, Z. Shao, and H. Zhang, “Robust UWB Indoor Localization for NLOS Scenes via Learning Spatial-temporal Features,” IEEE Sensors Journal, 2022.
  19. D.-H. Kim, A. Farhad, and J.-Y. Pyun, “UWB Positioning System Based on LSTM Classification with Mitigated NLOS Effects,” IEEE IoT Journal, 2022.
  20. K. Wen, K. Yu, and Y. Li, “NLOS identification and Compensation for UWB Ranging Based on Obstruction Classification,” in Proc. IEEE EUSIPCO, 2017.
  21. K. Yu, K. Wen, Y. Li, S. Zhang, and K. Zhang, “A Novel NLOS Mitigation Algorithm for UWB Localization in Harsh Indoor Environments,” IEEE TVT, 2018.
  22. X. Yang, J. Wang, D. Song, B. Feng, and H. Ye, “A Novel NLOS Error Compensation Method Based IMU for UWB Indoor Positioning System,” IEEE Sensors Journal, 2021.
  23. D. Feng, J. Peng, Y. Zhuang, C. Guo, T. Zhang, Y. Chu, X. Zhou, and X.-G. Xia, “An Adaptive IMU/UWB Fusion Method for NLOS Indoor Positioning and Navigation,” IEEE IoT Journal, 2023.
  24. C. Jiang, S. Chen, Y. Chen, D. Liu, and Y. Bo, “An UWB Channel Impulse Response De-Noising Method for NLOS/LOS Classification Boosting,” IEEE Communications Letters, 2020.
  25. H. Wymeersch, S. Maranò, W. M. Gifford, and M. Z. Win, “A Machine Learning Approach to Ranging Error Mitigation for UWB Localization,” IEEE Transactions on Communications, 2012.
  26. Z. Zeng, S. Liu, and L. Wang, “NLOS Identification for UWB based on Channel Impulse Response,” in Proc. IEEE ICSPCS, 2018.
  27. V. Barral, C. J. Escudero, J. A. García-Naya, and R. Maneiro-Catoira, “LOS Identification and Mitigation Using Low-Cost UWB Devices,” Sensors, 2019.

Summary

We haven't generated a summary for this paper yet.