Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing the isotropy of cosmic acceleration with Pantheon+ and SH0ES: A cosmographic analysis (2402.17741v2)

Published 27 Feb 2024 in astro-ph.CO, astro-ph.HE, and gr-qc

Abstract: We use a recent Pantheon+SH0ES compilation of Type Ia Supernova distance measurements at low-redshift, i.e., $0.01 \leq z \leq 0.10$, in order to investigate the directional dependency of the deceleration parameter ($q_0$) in different patches ($60{\circ}$ size) across the sky, as a probe of the statistical isotropy of the Universe. We adopt a cosmographic approach to compute the cosmological distances, fixing $H_0$ and $M_B$ to reference values provided by the collaboration. By looking at 500 different patches randomly taken across the sky, we find a maximum $\sim 3\sigma$ CL anisotropy level for $q_0$, whose direction points orthogonally to the cosmic microwave background (CMB) dipole axis, i.e., $(RA{\rm SN},DEC{\rm SN}) = (267{\circ},6{\circ})$ vs $(RA{\rm CMB},DEC{\rm CMB}) = (167{\circ},-7{\circ})$. We assessed the statistical significance of those results, finding that such a signal is expected due to the limitations of the observational sample. These results support that there is no significant evidence for a departure from the cosmic isotropy assumption, one of the pillars of the standard cosmological model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. J. Goodman, “Geocentrism reexamined,” Phys. Rev. D 52 (1995), 1821-1827 doi:10.1103/PhysRevD.52.1821 [arXiv:astro-ph/9506068 [astro-ph]].
  2. C. Clarkson and R. Maartens, “Inhomogeneity and the foundations of concordance cosmology,” Class. Quant. Grav. 27 (2010), 124008 doi:10.1088/0264-9381/27/12/124008 [arXiv:1005.2165 [astro-ph.CO]].
  3. R. Maartens, “Is the Universe homogeneous?,” Phil. Trans. Roy. Soc. Lond. A 369 (2011), 5115-5137 doi:10.1098/rsta.2011.0289 [arXiv:1104.1300 [astro-ph.CO]].
  4. C. Clarkson, “Establishing homogeneity of the universe in the shadow of dark energy,” Comptes Rendus Physique 13 (2012), 682-718 doi:10.1016/j.crhy.2012.04.005 [arXiv:1204.5505 [astro-ph.CO]].
  5. R. S. Gonçalves, G. C. Carvalho, C. A. P. Bengaly, J. C. Carvalho, A. Bernui, J. S. Alcaniz and R. Maartens, “Cosmic homogeneity: a spectroscopic and model-independent measurement,” Mon. Not. Roy. Astron. Soc. 475 (2018) no.1, L20-L24 doi:10.1093/mnrasl/slx202 [arXiv:1710.02496 [astro-ph.CO]].
  6. R. S. Gonçalves, G. C. Carvalho, U. Andrade, C. A. P. Bengaly, J. C. Carvalho and J. Alcaniz, “Measuring the cosmic homogeneity scale with SDSS-IV DR16 Quasars,” JCAP 03 (2021), 029 doi:10.1088/1475-7516/2021/03/029 [arXiv:2010.06635 [astro-ph.CO]].
  7. Y. Kim, C. G. Park, H. Noh and J. c. Hwang, “CMASS galaxy sample and the ontological status of the cosmological principle,” Astron. Astrophys. 660 (2022), A139 doi:10.1051/0004-6361/202141909 [arXiv:2112.04134 [astro-ph.CO]].
  8. U. Andrade, R. S. Gonçalves, G. C. Carvalho, C. A. P. Bengaly, J. C. Carvalho and J. Alcaniz, “The angular scale of homogeneity with SDSS-IV DR16 luminous red galaxies,” JCAP 10 (2022), 088 doi:10.1088/1475-7516/2022/10/088 [arXiv:2205.07819 [astro-ph.CO]].
  9. T. S. Kolatt and O. Lahav, “Constraints on cosmological anisotropy out to z=1 from supernovae ia,” Mon. Not. Roy. Astron. Soc. 323 (2001), 859 doi:10.1046/j.1365-8711.2001.04262.x [arXiv:astro-ph/0008041 [astro-ph]].
  10. D. J. Schwarz and B. Weinhorst, “(An)isotropy of the Hubble diagram: Comparing hemispheres,” Astron. Astrophys. 474 (2007), 717-729 doi:10.1051/0004-6361:20077998 [arXiv:0706.0165 [astro-ph]].
  11. I. Antoniou and L. Perivolaropoulos, “Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes,” JCAP 12 (2010), 012 doi:10.1088/1475-7516/2010/12/012 [arXiv:1007.4347 [astro-ph.CO]].
  12. R. G. Cai and Z. L. Tuo, “Direction Dependence of the Deceleration Parameter,” JCAP 02 (2012), 004 doi:10.1088/1475-7516/2012/02/004 [arXiv:1109.0941 [astro-ph.CO]].
  13. B. Bahr-Kalus, D. J. Schwarz, M. Seikel and A. Wiegand, “Constraints on anisotropic cosmic expansion from supernovae,” Astron. Astrophys. 553 (2013), A56 doi:10.1051/0004-6361/201220928 [arXiv:1212.3691 [astro-ph.CO]].
  14. W. Zhao, P. X. Wu and Y. Zhang, “Anisotropy of Cosmic Acceleration,” Int. J. Mod. Phys. D 22 (2013), 1350060 doi:10.1142/S0218271813500600 [arXiv:1305.2701 [astro-ph.CO]].
  15. J. Beltran Jimenez, V. Salzano and R. Lazkoz, “Anisotropic expansion and SNIa: an open issue,” Phys. Lett. B 741 (2015), 168-177 doi:10.1016/j.physletb.2014.12.031 [arXiv:1402.1760 [astro-ph.CO]].
  16. Z. Chang, X. Li, H. N. Lin and S. Wang, “Constraining anisotropy of the universe from different groups of type-Ia supernovae,” Eur. Phys. J. C 74 (2014), 2821 doi:10.1140/epjc/s10052-014-2821-7 [arXiv:1403.5661 [astro-ph.CO]].
  17. C. A. P. Bengaly, A. Bernui and J. S. Alcaniz, “Probing Cosmological Isotropy With Type IA Supernovae,” Astrophys. J. 808 (2015), 39 doi:10.1088/0004-637X/808/1/39 [arXiv:1503.01413 [astro-ph.CO]].
  18. B. Javanmardi, C. Porciani, P. Kroupa and J. Pflamm-Altenburg, “Probing the isotropy of cosmic acceleration traced by Type Ia supernovae,” Astrophys. J. 810 (2015) no.1, 47 doi:10.1088/0004-637X/810/1/47 [arXiv:1507.07560 [astro-ph.CO]].
  19. H. K. Deng and H. Wei, “Null signal for the cosmic anisotropy in the Pantheon supernovae data,” Eur. Phys. J. C 78 (2018) no.9, 755 doi:10.1140/epjc/s10052-018-6159-4 [arXiv:1806.02773 [astro-ph.CO]].
  20. U. Andrade, C. A. P. Bengaly, B. Santos and J. S. Alcaniz, “A Model-independent Test of Cosmic Isotropy with Low-z Pantheon Supernovae,” Astrophys. J. 865 (2018) no.2, 119 doi:10.3847/1538-4357/aadb90 [arXiv:1806.06990 [astro-ph.CO]].
  21. J. Colin, R. Mohayaee, M. Rameez and S. Sarkar, “Evidence for anisotropy of cosmic acceleration,” Astron. Astrophys. 631 (2019), L13 doi:10.1051/0004-6361/201936373 [arXiv:1808.04597 [astro-ph.CO]].
  22. D. Zhao, Y. Zhou and Z. Chang, “Anisotropy of the Universe via the Pantheon supernovae sample revisited,” Mon. Not. Roy. Astron. Soc. 486 (2019) no.4, 5679-5689 doi:10.1093/mnras/stz1259 [arXiv:1903.12401 [astro-ph.CO]].
  23. L. Kazantzidis and L. Perivolaropoulos, “Hints of a Local Matter Underdensity or Modified Gravity in the Low z𝑧zitalic_z Pantheon data,” Phys. Rev. D 102 (2020) no.2, 023520 doi:10.1103/PhysRevD.102.023520 [arXiv:2004.02155 [astro-ph.CO]].
  24. J. P. Hu, Y. Y. Wang and F. Y. Wang, “Testing cosmic anisotropy with Pantheon sample and quasars at high redshifts,” Astron. Astrophys. 643 (2020), A93 doi:10.1051/0004-6361/202038541 [arXiv:2008.12439 [astro-ph.CO]].
  25. A. Salehi, H. Farajollahi, M. Motahari, P. Pashamokhtari, M. Yarahmadi and S. Fathi, “Are Type Ia supernova powerful tool to detect anisotropic expansion of the Universe?,” Eur. Phys. J. C 80 (2020) no.8, 753 doi:10.1140/epjc/s10052-020-8269-z
  26. D. Zhao and J. Q. Xia, “A tomographic test of cosmic anisotropy with the recently-released quasar sample,” Eur. Phys. J. C 81 (2021) no.10, 948 doi:10.1140/epjc/s10052-021-09701-9
  27. C. Krishnan, R. Mohayaee, E. Ó. Colgáin, M. M. Sheikh-Jabbari and L. Yin, “Hints of FLRW breakdown from supernovae,” Phys. Rev. D 105 (2022) no.6, 063514 doi:10.1103/PhysRevD.105.063514 [arXiv:2106.02532 [astro-ph.CO]].
  28. W. Rahman, R. Trotta, S. S. Boruah, M. J. Hudson and D. A. van Dyk, “New constraints on anisotropic expansion from supernovae Type Ia,” Mon. Not. Roy. Astron. Soc. 514 (2022) no.1, 139-163 doi:10.1093/mnras/stac1223 [arXiv:2108.12497 [astro-ph.CO]].
  29. N. Horstmann, Y. Pietschke and D. J. Schwarz, “Inference of the cosmic rest-frame from supernovae Ia,” Astron. Astrophys. 668 (2022), A34 doi:10.1051/0004-6361/202142640 [arXiv:2111.03055 [astro-ph.CO]].
  30. S. Dhawan, A. Borderies, H. J. Macpherson and A. Heinesen, “The quadrupole in the local Hubble parameter: first constraints using Type Ia supernova data and forecasts for future surveys,” Mon. Not. Roy. Astron. Soc. 519 (2023) no.4, 4841-4855 doi:10.1093/mnras/stac3812 [arXiv:2205.12692 [astro-ph.CO]].
  31. F. Sorrenti, R. Durrer and M. Kunz, “The dipole of the Pantheon+SH0ES data,” JCAP 11 (2023), 054 doi:10.1088/1475-7516/2023/11/054 [arXiv:2212.10328 [astro-ph.CO]].
  32. J. A. Cowell, S. Dhawan and H. J. Macpherson, “Potential signature of a quadrupolar hubble expansion in Pantheon+supernovae,” Mon. Not. Roy. Astron. Soc. 526 (2023) no.1, 1482-1494 doi:10.1093/mnras/stad2788 [arXiv:2212.13569 [astro-ph.CO]].
  33. E. Pastén and V. H. Cárdenas, “Testing ΛΛ\Lambdaroman_ΛCDM cosmology in a binned universe: Anomalies in the deceleration parameter,” Phys. Dark Univ. 40 (2023), 101224 doi:10.1016/j.dark.2023.101224 [arXiv:2301.10740 [astro-ph.CO]].
  34. R. Mc Conville and E. Ó. Colgáin, “Anisotropic distance ladder in Pantheon+supernovae,” Phys. Rev. D 108 (2023) no.12, 123533 doi:10.1103/PhysRevD.108.123533 [arXiv:2304.02718 [astro-ph.CO]].
  35. L. Perivolaropoulos, “Isotropy properties of the absolute luminosity magnitudes of SnIa in the Pantheon+ and SH0ES samples,” Phys. Rev. D 108 (2023) no.6, 063509 doi:10.1103/PhysRevD.108.063509 [arXiv:2305.12819 [astro-ph.CO]].
  36. L. Tang, H. N. Lin, L. Liu and X. Li, “Consistency of Pantheon+ supernovae with a large-scale isotropic universe*,” Chin. Phys. C 47 (2023) no.12, 125101 doi:10.1088/1674-1137/acfaf0 [arXiv:2309.11320 [astro-ph.CO]].
  37. J. P. Hu, Y. Y. Wang, J. Hu and F. Y. Wang, “Testing the cosmological principle with the Pantheon+ sample and the region-fitting method,” [arXiv:2310.11727 [astro-ph.CO]].
  38. A. Carr, T. M. Davis, D. Scolnic, D. Scolnic, K. Said, D. Brout, E. R. Peterson and R. Kessler, “The Pantheon+ analysis: Improving the redshifts and peculiar velocities of Type Ia supernovae used in cosmological analyses,” Publ. Astron. Soc. Austral. 39 (2022), e046 doi:10.1017/pasa.2022.41 [arXiv:2112.01471 [astro-ph.CO]].
  39. W. A. Hellwing, A. Nusser, M. Feix and M. Bilicki, “Not a Copernican observer: biased peculiar velocity statistics in the local Universe,” Mon. Not. Roy. Astron. Soc. 467 (2017) no.3, 2787-2796 doi:10.1093/mnras/stx213 [arXiv:1609.07120 [astro-ph.CO]].
  40. C. A. P. Bengaly, J. Larena and R. Maartens, “Is the local Hubble flow consistent with concordance cosmology?,” JCAP 03 (2019), 001 doi:10.1088/1475-7516/2019/03/001 [arXiv:1805.12456 [astro-ph.CO]].
  41. B. Kalbouneh, C. Marinoni and J. Bel, “Multipole expansion of the local expansion rate,” Phys. Rev. D 107 (2023) no.2, 023507 doi:10.1103/PhysRevD.107.023507 [arXiv:2210.11333 [astro-ph.CO]].
  42. R. Maartens, J. Santiago, C. Clarkson, B. Kalbouneh and C. Marinoni, “Covariant cosmography: the observer-dependence of the Hubble parameter,” [arXiv:2312.09875 [astro-ph.CO]].
  43. B. Kalbouneh, C. Marinoni and R. Maartens, “Cosmography of the Local Universe by Multipole Analysis of the Expansion Rate Fluctuation Field,” [arXiv:2401.12291 [astro-ph.CO]].
  44. S. Weinberg, “Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity,” John Wiley and Sons, 1972, ISBN 978-0-471-92567-5, 978-0-471-92567-5
  45. M. Visser, “Jerk and the cosmological equation of state,” Class. Quant. Grav. 21 (2004), 2603-2616 doi:10.1088/0264-9381/21/11/006 [arXiv:gr-qc/0309109 [gr-qc]].
  46. C. Cattoen and M. Visser, “Cosmography: Extracting the Hubble series from the supernova data,” [arXiv:gr-qc/0703122 [gr-qc]].
  47. C. A. P. Bengaly, A. Bernui, J. S. Alcaniz and I. S. Ferreira, “Probing cosmological isotropy with Planck Sunyaev–Zeldovich galaxy clusters,” Mon. Not. Roy. Astron. Soc. 466 (2017) no.3, 2799-2804 doi:10.1093/mnras/stw3233 [arXiv:1511.09414 [astro-ph.CO]].
  48. C. A. P. Bengaly, C. P. Novaes, H. S. Xavier, M. Bilicki, A. Bernui and J. S. Alcaniz, “The dipole anisotropy of WISE × SuperCOSMOS number counts,” Mon. Not. Roy. Astron. Soc. 475 (2018) no.1, L106-L110 doi:10.1093/mnrasl/sly002 [arXiv:1707.08091 [astro-ph.CO]].
  49. U. Andrade, C. A. P. Bengaly, J. S. Alcaniz and S. Capozziello, “Revisiting the statistical isotropy of GRB sky distribution,” Mon. Not. Roy. Astron. Soc. 490 (2019) no.4, 4481-4488 doi:10.1093/mnras/stz2754 [arXiv:1905.08864 [astro-ph.CO]].
  50. V. Mittal, O. T. Oayda and G. F. Lewis, “The Cosmic Dipole in the Quaia Sample of Quasars: A Bayesian Analysis,” [arXiv:2311.14938 [astro-ph.CO]].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com