Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning reduced-order Quadratic-Linear models in Process Engineering using Operator Inference (2402.17698v2)

Published 27 Feb 2024 in math.NA, cs.LG, and cs.NA

Abstract: In this work, we address the challenge of efficiently modeling dynamical systems in process engineering. We use reduced-order model learning, specifically operator inference. This is a non-intrusive, data-driven method for learning dynamical systems from time-domain data. The application in our study is carbon dioxide methanation, an important reaction within the Power-to-X framework, to demonstrate its potential. The numerical results show the ability of the reduced-order models constructed with operator inference to provide a reduced yet accurate surrogate solution. This represents an important milestone towards the implementation of fast and reliable digital twin architectures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Antoulas, A.C.: Approximation of Large-scale Dynamical Systems. Advances in Design and Control. SIAM, Philadelphia, PA, USA (2005). 10.1137/1.9780898718713
  2. SIAM J. Sci. Comput. 37(2), B239–B260 (2015). 10.1137/14097255X
  3. Electron. Trans. Numer. Anal. 56, 28–51 (2022). 10.1553/etna_vol56s28
  4. Comp. Meth. Appl. Mech. Eng. 372 (2020). 10.1016/j.cma.2020.113433
  5. SIAM review 57(4), 483–531 (2015). 10.1137/130932715
  6. Computational Science &\&& Engineering. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017). 10.1137/1.9781611974829
  7. AIChE 63(1), 23–31 (2017). 10.1002/aic.15496
  8. Proceedings of the National Academy of Sciences 113(15), 3932–3937 (2016). 10.1073/pnas.1517384113
  9. Mechanical Systems and Signal Processing 200, 110620 (2023). 10.1016/j.ymssp.2023.110620
  10. Renewable and Sustainable Energy Reviews 81, 433–446 (2018). 10.1016/j.rser.2017.08.004
  11. arXiv preprint (2021). 10.48550/arXiv.2103.02249
  12. Proceedings of the Royal Society A 478(2262), 20210883 (2022). 10.1098/rspa.2021.0883
  13. arXiv preprint (2023). 10.48550/arXiv.2308.13819
  14. Gu, C.: QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. Trans. Comput.-Aided Design Integr. Circ. Syst. 30(9), 1307–1320 (2011). 10.1109/TCAD.2011.2142184
  15. Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing pp. 167–179 (2018)
  16. Cambridge Monographs on Mechanics. Cambridge University Press (2012). 10.1017/CBO9780511622700
  17. Annual Review of Fluid Mechanics 56 (2024). 10.1146/annurev-fluid-121021-025220
  18. SIAM (2016). 10.1137/1.9781611974508
  19. Ljung, L.: System Identification: Theory for the User. Information and System Sciences Series. Prentice Hall (1999). Subsequent edition, ISBN: 978-0136566953
  20. Nature Machine Intelligence 3(3), 218–229 (2021). 10.1038/s42256-021-00302-5
  21. Linear Algebra and Its Applications 425(2-3), 634–662 (2007). 10.1016/j.laa.2007.03.008
  22. Journal of the Royal Society of New Zealand 51(2), 194–211 (2021). 10.1080/03036758.2020.1863237
  23. SIAM Journal on Scientific Computing 45(4), A1917–A1946 (2023). 10.1137/21M1452810
  24. Nature Computational Science 1(5), 313–320 (2021). 10.1038/s43588-021-00072-5
  25. Peherstorfer, B.: Sampling low-dimensional Markovian dynamics for preasymptotically recovering reduced models from data with operator inference. SIAM Journal on Scientific Computing 42(5), A3489–A3515 (2020). 10.1137/19M1292448
  26. Comp. Meth. Appl. Mech. Eng. 306, 196–215 (2016). 10.1016/j.cma.2016.03.025
  27. Tech. rep. (2023). Accepted for presentation at the Proceedings of the 34th European Symposium on Computer Aided Process Engineering, June 2-6, 2024, Florence, Italy
  28. Physica D: Nonlinear Phenomena 406(1), art. 132401 (2020). 10.1016/j.physd.2020.132401
  29. J. Comp. Phys. 378, 686–707 (2019). 10.1016/j.jcp.2018.10.045
  30. Comp. Meth. Appl. Mech. Eng. 404, 115836 (2023). 10.1016/j.cma.2022.115836
  31. SIAM J. Sci. Comput. 45(4), A1462–A1490 (2023). 10.1137/21M1439729
  32. Kluwer Academic Publishers (1996). 10.1007/978-1-4613-0465-4
  33. Int. J. Num. Methods Fluids 93(8), 2803–2821 (2021). 10.1002/fld.4998
  34. Chemical Engineering Journal 428, 130771 (2022). 10.1016/j.cej.2021.130771
Citations (1)

Summary

We haven't generated a summary for this paper yet.