Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beacon, a lightweight deep reinforcement learning benchmark library for flow control (2402.17402v2)

Published 27 Feb 2024 in physics.comp-ph, cs.LG, cs.SY, and eess.SY

Abstract: Recently, the increasing use of deep reinforcement learning for flow control problems has led to a new area of research, focused on the coupling and the adaptation of the existing algorithms to the control of numerical fluid dynamics environments. Although still in its infancy, the field has seen multiple successes in a short time span, and its fast development pace can certainly be partly imparted to the open-source effort that drives the expansion of the community. Yet, this emerging domain still misses a common ground to (i) ensure the reproducibility of the results, and (ii) offer a proper ad-hoc benchmarking basis. To this end, we propose Beacon, an open-source benchmark library composed of seven lightweight 1D and 2D flow control problems with various characteristics, action and observation space characteristics, and CPU requirements. In this contribution, the seven considered problems are described, and reference control solutions are provided. The sources for the following work are available at https://github.com/jviquerat/beacon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil. Physics of Fluids, 34:033606, 2022.
  2. Synchronisation through learning for two self-propelled swimmers. Bioinspiration & Biomimetics, 12(3):036001, 2017.
  3. Controlling rayleigh–bénard convection via reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.
  4. What matters in on-policy reinforcement learning? a large-scale empirical study. arXiv preprint arXiv:2006.05990, 2020.
  5. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.
  6. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.
  7. J. Rabault and A. Kuhnle. Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach. Physics of Fluids, 31(9):094105, 2019.
  8. J. Viquerat and E. Hachem. Parallel bootstrap-based on-policy deep reinforcement learning for continuous fluid flow control applications. Fluids, 8(7), 2023.
  9. Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film. AIP Advances, 9(12):125014, 2019.
  10. Numba: A llvm-based python jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 2015.
  11. Openai gym. arXiv preprint arXiv:1606.01540, 2016.
  12. Array programming with NumPy. Nature, 585(7825):357–362, 2020.
  13. J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
  14. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
  15. P. L. Kapitza. Wave flow of a thin viscous fluid layers. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 18:3–18, 1948.
  16. V. Y. Shkadov. Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dynamics, 2:29–34, 1967.
  17. G. Lavalle. Integral modeling of liquid films sheared by a gas flow. PhD thesis, ISAE - Institut Supérieur de l’Aéronautique et de l’Espace, 2014.
  18. Noise-driven wave transitions on a vertically falling film. Journal of Fluid Mechanics, 462:255–283, 2002.
  19. Complex wave dynamics on thin films. Elsevier, 2002.
  20. A. Koulago and D. Parséghian. A propos d’une équation de la dynamique ondulatoire dans les films liquides. Journal de Physique III, 5(3):309–312, 1995.
  21. A finite volume method to solve the navier–stokes equations for incompressible flows on unstructured meshes. International Journal of Thermal Sciences, 39(8):806–825, 2000.
  22. Numerical simulation of two-dimensional rayleigh–bénard convection in an enclosure. Comptes Rendus Mécanique, 336(5):464–470, 2008.
  23. B. Saltzman. Finite amplitude free convection as an initial value problem. Journal of atmospheric sciences, 19(4):329–341, 1962.
  24. E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130–141, 1963.
  25. Fourth-order 2n-storage Runge-Kutta schemes. Technical report, National Aeronautics and Space Administration, 1994.
  26. H. Bateman. Some recent researches on the motion of fluids. Monthly Weather Review, 43(4):163–170, 1915.
  27. J. M. Burgers. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics, 1:171–199, 1948.
  28. A.J.C Saint-Venant. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. Comptes Rendus des Séances de Académie des Sciences, 73, 1871.
  29. Funnel control for a moving water tank. Automatica, 135:109999, 2022.
  30. étude d’un modèle de ruissellement 1d. Technical report, Univ. Orléans, INRA, 2007.
  31. P. Meliga and J.-M. Chomaz. An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. Journal of Fluid Mechanics, 671:137–167, 2011.
  32. Extracting energy from a flow: An asymptotic approach using vortex-induced vibrations and feedback control. Journal of Fluids and Structures, 27:861–874, 2011.
  33. D. Barkley. Linear analysis of the cylinder wake mean flow. Europhysics Letters, 75:750, 2006.

Summary

We haven't generated a summary for this paper yet.