Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Bayesian Estimation and Inference with Control Functions (2402.17374v2)

Published 27 Feb 2024 in econ.EM and stat.ME

Abstract: This paper introduces a quasi-Bayesian method that integrates frequentist nonparametric estimation with Bayesian inference in a two-stage process. Applied to an endogenous discrete choice model, the approach first uses kernel or sieve estimators to estimate the control function nonparametrically, followed by Bayesian methods to estimate the structural parameters. This combination leverages the advantages of both frequentist tractability for nonparametric estimation and Bayesian computational efficiency for complicated structural models. We analyze the asymptotic properties of the resulting quasi-posterior distribution, finding that its mean provides a consistent estimator for the parameters of interest, although its quantiles do not yield valid confidence intervals. However, bootstrapping the quasi-posterior mean accounts for the estimation uncertainty from the first stage, thereby producing asymptotically valid confidence intervals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Agarwal, N., and P. Somaini (2018): “Demand analysis using strategic reports: An application to a school choice mechanism,” Econometrica, 86, 391–444.
  2. Albert, J. H., and S. Chib (1993): “Bayesian analysis of binary and polychotomous response data,” Journal of the American statistical Association, 88(422), 669–679.
  3. Anceschi, N., A. Fasano, D. Durante, and G. Zanella (2023): “Bayesian conjugacy in Probit, Tobit, Multinomial Probit and extensions: A review and new results,” Journal of the American Statistical Association, 118(542), 1451–1469.
  4. Chen, L. Y., S. Lee, and M. J. Sung (2014): “Maximum score estimation with nonparametrically generated regressors,” Econometrics Journal, 17, 271–300.
  5. Chen, X. (2007): “Large sample sieve estimation of semi-nonparametric models,” Handbook of Econometrics, 6, 5549–5632.
  6. Chen, X., T. M. Christensen, and E. Tamer (2018): “Monte Carlo confidence sets for identified sets,” Econometrica, 86, 1965–2018.
  7. Chen, X., O. Linton, and I. Van Keilegom (2003): “Estimation of semiparametric models when the criterion function is not smooth,” Econometrica, 71, 1591–1608.
  8. Cheng, G., and J. Huang (2010): “Bootstrap consistency for general semiparametric M-estimate,” Annals of Statistics, 38, 2884–2915.
  9. Cheng, G., and M. R. Kosorok (2008): “General frequentist properties of the posterior profile distribution,” Annals of Statistics, 36, 1819–1853.
  10. Chernozhukov, V., and H. Hong (2003): “An MCMC approach to classical estimation,” Journal of Econometrics, 115, 293–346.
  11. Chib, S., M. Shin, and A. Simoni (2018): “Bayesian estimation and comparison of moment condition models,” Journal of the American Statistical Association, 113, 1656–1668.
  12. Efron, B. (1979): “Bootstrap methods: Another look at the jackknife,” The Annals of statistics, 7, 1–26.
  13. Eldar, O., and L. Magnolfi (2020): “Regulatory competition and the market for corporate law,” American Economic Journal: Microeconomics, 12(2), 60–98.
  14. Hajivassiliou, V., D. McFadden, and P. Ruud (1996): “Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results,” Journal of econometrics, 72(1-2), 85–134.
  15. Hajivassiliou, V. A., and D. McFadden (1998): “The method of simulated scores for the estimation of LDV models,” Econometrica, 66, 863–896.
  16. Han, Q., and J. Wellner (2019): “Convergence rates of least squares regression estimators with heavy-tailed errors,” The Annals of Statistics, 47, 2286–2319.
  17. Heckman, J. J., and R. Robb (1985): “Alternative methods for evaluating the impact of interventions: An overview,” Journal of Econometrics, pp. 239–267.
  18. Ichimura, H., and S. Lee (2010): “Characterization of the asymptotic distribution of semiparametric M-estimators,” Journal of Econometrics, 159, 252–266.
  19. Imai, K., and D. A. Van Dyk (2005): “A Bayesian analysis of the multinomial probit model using marginal data augmentation,” Journal of econometrics, 124(2), 311–334.
  20. Kim, J.-Y. (2002): “Limited information likelihood and Bayesian analysis,” Journal of Econometrics, 107(1-2), 175–193.
  21.    (2014): “An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification,” Journal of Econometrics, 178, 132–145.
  22. Kleijn, B. J. K., and A. W. van der Vaart (2012): “The Bernstein-von-Mises theorem under misspecification,” Electronic Journal of Statistics, 6, 354–381.
  23. Lee, B., M. Kosorok, and J. Fine (2005): “The profile sampler,” Journal of the American Statistical Association, 100, 960–969.
  24. McCulloch, R., N. Polson, and P. E. Rossi (2000): “A Bayesian analysis of the multinomial probit model with fully identified parameters,” Journal of Econometrics, 99(1), 173–193.
  25. McCulloch, R., and P. E. Rossi (1994): “An exact likelihood analysis of the multinomial probit model,” Journal of Econometrics, 64(1-2), 207–240.
  26. McFadden, D. (1989): “A method of simulated moments for estimation of discrete response models without numerical integration,” Econometrica, 57, 995–1026.
  27. Müller, U. K. (2013): “Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix,” Econometrica, 81(5), 1805–1849.
  28. Murphy, K. M., and R. H. Topel (2002): “Estimation and inference in two-step econometric models,” Journal of Business & Economic Statistics, 20, 88–97.
  29. Nan, B., and J. A. Wellner (2013): “A general semiparametric Z-estimation approach for case-cohort studies,” Statistica Sinica, 23, 1155.
  30. Newey, W. K. (1994): “The asymptotic variance of semiparametric estimators,” Econometrica, 62, 1349–1382.
  31. Newey, W. K., and D. McFadden (1994): “Large sample estimation and hypothesis testing,” Handbook of Econometrics, 4, 2111–2245.
  32. Nobile, A. (1998): “A hybrid Markov chain for the Bayesian analysis of the multinomial probit model,” Statistics and Computing, 8(3), 229–242.
  33. Pakes, A., and D. Pollard (1989): “Simulation and the asymptotics of optimization estimators,” Econometrica, 57, 1027–1057.
  34. Petrin, A., and K. Train (2010): “A control function approach to endogeneity in consumer choice models,” Journal of marketing research, 47(1), 3–13.
  35. Praestgaard, J., and J. Wellner (1993): “Exchangably weighted bootstraps of the general empirical process,” Annals of Probability, 21, 2053–2086.
  36. Train, K. E. (2009): Discrete choice methods with simulation. Cambridge university press.
  37. van der Vaart, A. (1998): Asymptotic statistics. Cambridge University Press.
  38. Wooldridge, J. M. (2015): “Control function methods in applied econometrics,” Journal of Human Resources, 50(2), 420–445.

Summary

We haven't generated a summary for this paper yet.