Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning Based Robust Volt/Var Control in Active Distribution Networks With Imprecisely Known Delay (2402.17268v1)

Published 27 Feb 2024 in eess.SY and cs.SY

Abstract: Active distribution networks (ADNs) incorporating massive photovoltaic (PV) devices encounter challenges of rapid voltage fluctuations and potential violations. Due to the fluctuation and intermittency of PV generation, the state gap, arising from time-inconsistent states and exacerbated by imprecisely known system delays, significantly impacts the accuracy of voltage control. This paper addresses this challenge by introducing a framework for delay adaptive Volt/Var control (VVC) in the presence of imprecisely known system delays to regulate the reactive power of PV inverters. The proposed approach formulates the voltage control, based on predicted system operation states, as a robust VVC problem. It employs sample selection from the state prediction interval to promptly identify the worst-performing system operation state. Furthermore, we leverage the decentralized partially observable Markov decision process (Dec-POMDP) to reformulate the robust VVC problem. We design Multiple Policy Networks and employ Multiple Policy Networks and Reward Shaping-based Multi-agent Twin Delayed Deep Deterministic Policy Gradient (MPNRS-MATD3) algorithm to efficiently address and solve the Dec-POMDP model-based problem. Simulation results show the delay adaption characteristic of our proposed framework, and the MPNRS-MATD3 outperforms other multi-agent reinforcement learning algorithms in robust voltage control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. M. S. S. Abad and J. Ma, “Photovoltaic hosting capacity sensitivity to active distribution network management,” IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 107–117, 2020.
  2. B. Zhao, Z. Xu, C. Xu, C. Wang, and F. Lin, “Network partition-based zonal voltage control for distribution networks with distributed pv systems,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4087–4098, 2017.
  3. D. Generation and E. Storage, “Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces amendment 1: To provide more,” IEEE: Piscataway, NJ, USA, 2020.
  4. F. Ding, A. Nagarajan, S. Chakraborty, M. Baggu, A. Nguyen, S. Walinga, M. McCarty, and F. Bell, “Photovoltaic impact assessment of smart inverter volt-var control on distribution system conservation voltage reduction and power quality,” National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016.
  5. F. A. Oliehoek and C. Amato, “A concise introduction to decentralized pomdps,” Springer Publishing Company, Incorporated, 2016.
  6. A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations: Theory and application to reward shaping,” in Icml, vol. 99.   Citeseer, 1999, pp. 278–287.
  7. R. Lu, Z. Jiang, H. Wu, Y. Ding, D. Wang, and H.-T. Zhang, “Reward shaping-based actor–critic deep reinforcement learning for residential energy management,” IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 2662–2673, 2022.
  8. K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for control of reactive power by distributed photovoltaic generators,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1063–1073, 2011.
  9. J. G. David Salinas, Valentin Flunkert and T. Januschowski, “Deepar: Probabilistic forecasting with autoregressive recurrent networks,” International Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, 2020.
  10. H. Sun, Q. Guo, J. Qi, V. Ajjarapu, R. Bravo, J. Chow, Z. Li, R. Moghe, E. Nasr-Azadani, U. Tamrakar, G. N. Taranto, R. Tonkoski, G. Valverde, Q. Wu, and G. Yang, “Review of challenges and research opportunities for voltage control in smart grids,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2790–2801, 2019.
  11. P. Richardson, D. Flynn, and A. Keane, “Local versus centralized charging strategies for electric vehicles in low voltage distribution systems,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 1020–1028, 2012.
  12. K. E. Antoniadou-Plytaria, I. N. Kouveliotis-Lysikatos, P. S. Georgilakis, and N. D. Hatziargyriou, “Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2999–3008, 2017.
  13. Z. Zhang, C. Dou, D. Yue, Y. Zhang, B. Zhang, and B. Li, “Regional coordinated voltage regulation in active distribution networks with pv-bess,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 2, pp. 596–600, 2023.
  14. W. Wang, N. Yu, Y. Gao, and J. Shi, “Safe off-policy deep reinforcement learning algorithm for volt-var control in power distribution systems,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3008–3018, 2020.
  15. M. Jafari, T. O. Olowu, and A. I. Sarwat, “Optimal smart inverters volt-var curve selection with a multi-objective volt-var optimization using evolutionary algorithm approach,” in 2018 North American Power Symposium (NAPS), 2018, pp. 1–6.
  16. H. Liu, C. Zhang, Q. Chai, K. Meng, Q. Guo, and Z. Y. Dong, “Robust regional coordination of inverter-based volt/var control via multi-agent deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 12, no. 6, pp. 5420–5433, 2021.
  17. B. Zhang, Z. Chen, X. Wu, D. Cao, and W. Hu, “A matd3 -based voltage control strategy for distribution networks considering active and reactive power adjustment costs,” in 2022 IEEE International Conference on Power Systems and Electrical Technology (PSET), 2022, pp. 189–194.
  18. T. Brown, J. Hörsch, and D. Schlachtberger, “Pypsa: Python for power system analysis,” arXiv preprint arXiv:1707.09913, 2017.
  19. R. D. Zimmerman, C. E. Murillo-Sánchez, and D. Gan, “Matpower,” PSERC.[Online]. Software Available at: http://www. pserc. cornell. edu/matpower, 1997.
  20. S. Wang, J. Duan, D. Shi, C. Xu, H. Li, R. Diao, and Z. Wang, “A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning,” IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4644–4654, 2020.
  21. X. Sun and J. Qiu, “Two-stage volt/var control in active distribution networks with multi-agent deep reinforcement learning method,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 2903–2912, 2021.
  22. D. Cao, J. Zhao, W. Hu, F. Ding, Q. Huang, and Z. Chen, “Attention enabled multi-agent drl for decentralized volt-var control of active distribution system using pv inverters and svcs,” IEEE Transactions on Sustainable Energy, vol. 12, no. 3, pp. 1582–1592, 2021.
  23. D. Cao, J. Zhao, W. Hu, N. Yu, F. Ding, Q. Huang, and Z. Chen, “Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems,” IEEE Transactions on Smart Grid, vol. 13, no. 1, pp. 149–165, 2022.
  24. B. Wei, Z. Qiu, and G. Deconinck, “A mean-field voltage control approach for active distribution networks with uncertainties,” IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1455–1466, 2021.
  25. S. Gorbachev, A. Mani, L. Li, L. Li, and Y. Zhang, “Distributed energy resources based two-layer delay-independent voltage coordinated control in active distribution network,” IEEE Transactions on Industrial Informatics, pp. 1–10, 2023.
  26. L. Xing, Y. Mishra, Y.-C. Tian, G. Ledwich, C. Wen, W. He, W. Du, and F. Qian, “Distributed voltage regulation for low-voltage and high-pv-penetration networks with battery energy storage systems subject to communication delay,” IEEE Transactions on Control Systems Technology, vol. 30, no. 1, pp. 426–433, 2022.
  27. L. Sang, Y. Xu, H. Long, and W. Wu, “Safety-aware semi-end-to-end coordinated decision model for voltage regulation in active distribution network,” IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 1814–1826, 2023.
  28. A. F. Nematollahi, H. Shahinzadeh, H. Nafisi, B. Vahidi, Y. Amirat, and M. Benbouzid, “Sizing and sitting of ders in active distribution networks incorporating load prevailing uncertainties using probabilistic approaches,” Applied Sciences, vol. 11, no. 9, 2021.
  29. J. Wang, W. Xu, Y. Gu, W. Song, and T. C. Green, “Multi-agent reinforcement learning for active voltage control on power distribution networks,” Advances in Neural Information Processing Systems, vol. 34, pp. 3271–3284, 2021.
  30. A. K. Jain, K. Horowitz, F. Ding, N. Gensollen, B. Mather, and B. Palmintier, “Quasi-static time-series pv hosting capacity methodology and metrics,” in 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2019, pp. 1–5.
  31. M. Gholami, A. Pisano, and E. Usai, “Robust distributed optimal secondary voltage control in islanded microgrids with time-varying multiple delays,” in 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020, pp. 1–8.

Summary

We haven't generated a summary for this paper yet.