Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Group Action Approaches in Erdos Quotient Set Problem (2402.17141v1)

Published 27 Feb 2024 in math.CO

Abstract: Let $\mathbb{F}_q$ denote the finite field of $q$ elements. For $E \subset \mathbb{F}_qd$, denote the distance set $\Delta(E)= {|x-y|2:=(x_1-y_1)2+ \cdots + (x_d-y_d)2 : (x,y)\in E2 }$. The Erdos quotient set problem was introduced in \cite{Iosevich_2019} where it was shown that for even $d\geq2$ that if $|E| \subset \mathbb{F}_q2$ such that $|E| >> q{d/2}$, then $\frac{\Delta(E)}{\Delta(E)}:= {\frac{s}{t}:s,t \in \Delta(E), t\not=0} =\mathbb{F}_qd$. The proof of the latter result is quite sophisticated and in \cite{pham2023group}, a simple proof using a group-action approach was obtained for the case of $q \equiv 3 \mod 4$ when $d=2$. In the $q \equiv 3 \mod 4$ setting, for each $r \in (\mathbb{F}_q)2$, \cite{pham2023group} showed if $E \subset \mathbb{F}_q$, then $V(r):= # \left{ (a,b,c,d) \in E2: \frac{|a-b|2}{|c-d|2} = r \right} >> \frac{|E|4}{q}$. In this work we use group action techniques in the $q \equiv 3 \mod 4$ setting, for $d=2$ and improve the results of \cite{pham2023group} by removing the assumption on $r \in (\mathbb{F}_q)2$. Specifically we show if $d=2$ and $q \equiv 3 \mod 4$, then for each $r \in \mathbb{F}_q*$,$V(r)\geq \frac{|E|4}{2q}$if $|E|\geq \sqrt{2}q$ for all $r \in \mathbb{F}_q$. Finally, we improve the main result of \cite{bhowmik2023near} using our proof techniques from our quotient set results.

Summary

We haven't generated a summary for this paper yet.