Flying-cat parity checks for quantum error correction (2402.17001v2)
Abstract: Long range, multi-qubit parity checks have applications in both quantum error correction and measurement-based entanglement generation. Such parity checks could be performed using qubit-state-dependent phase shifts on propagating pulses of light described by coherent states $\vert\alpha\rangle$ of the electromagnetic field. We consider "flying-cat" parity checks based on an entangling operation that is quantum non-demolition (QND) for Schr\"odinger's cat states $\vert\alpha\rangle\pm \vert-\alpha\rangle$. This operation encodes parity information in the phase of maximally distinguishable coherent states $\vert\pm \alpha\rangle$, which can be read out using a phase-sensitive measurement of the electromagnetic field. In contrast to many implementations, where single-qubit errors and measurement errors can be treated as independent, photon loss during flying-cat parity checks introduces errors on physical qubits at a rate that is anti-correlated with the probability for measurement errors. We analyze this trade-off for three-qubit parity checks, which are a requirement for universal fault-tolerant quantum computing with the subsystem surface code. We further show how a six-qubit entangled "tetrahedron" state can be prepared using these three-qubit parity checks. The tetrahedron state can be used as a resource for controlled quantum teleportation of a two-qubit state, or as a source of shared randomness with potential applications in three-party quantum key distribution. Finally, we provide conditions for performing high-quality flying-cat parity checks in a state-of-the-art circuit QED architecture, accounting for qubit decoherence, internal cavity losses, and finite-duration pulses, in addition to transmission losses.
- A. Reiserer and G. Rempe, Cavity-based quantum networks with single atoms and optical photons, Rev. Mod. Phys. 87, 1379 (2015).
- N. H. Nickerson, Y. Li, and S. C. Benjamin, Topological quantum computing with a very noisy network and local error rates approaching one percent, Nat. Comm. 4, 1756 (2013).
- N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links, Phys. Rev. X 4, 041041 (2014).
- S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, arXiv preprint quant-ph/9811052 (1998).
- A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-threshold universal quantum computation on the surface code, Phys. Rev. A 80, 052312 (2009).
- D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
- A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098 (1996).
- A. Steane, Multiple-particle interference and quantum error correction, Proc. R. Soc. London, Ser. A 452, 2551 (1996).
- D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999).
- S. E. Nigg, A. Fuhrer, and D. Loss, Superconducting grid-bus surface code architecture for hole-spin qubits, Phys. Rev. Lett. 118, 147701 (2017).
- C. Leroux, A. Di Paolo, and A. Blais, Superconducting coupler with exponentially large on: off ratio, Phys. Rev. Appl. 16, 064062 (2021).
- L. Trifunovic, F. L. Pedrocchi, and D. Loss, Long-distance entanglement of spin qubits via ferromagnet, Phys. Rev. X 3, 041023 (2013).
- L. Tornberg and G. Johansson, High-fidelity feedback-assisted parity measurement in circuit qed, Phys. Rev. A 82, 012329 (2010).
- K. Lalumiere, J. M. Gambetta, and A. Blais, Tunable joint measurements in the dispersive regime of cavity qed, Phys. Rev. A 81, 040301 (2010).
- S. E. Nigg and S. M. Girvin, Stabilizer quantum error correction toolbox for superconducting qubits, Phys. Rev. Lett. 110, 243604 (2013).
- D. P. DiVincenzo and F. Solgun, Multi-qubit parity measurement in circuit quantum electrodynamics, New J. Phys. 15, 075001 (2013).
- B. Royer, S. Puri, and A. Blais, Qubit parity measurement by parametric driving in circuit qed, Sci. Adv. 4, eaau1695 (2018).
- L.-M. Duan and H. J. Kimble, Scalable photonic quantum computation through cavity-assisted interactions, Physical review letters 92, 127902 (2004).
- B. Wang and L.-M. Duan, Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction, Phys. Rev. A 72, 022320 (2005).
- F. Yamaguchi, K. Nemoto, and W. J. Munro, Quantum error correction via robust probe modes, Phys. Rev. A 73, 060302 (2006).
- D. F. Walls and G. J. Milburn, Input–output formulation of optical cavities, Quantum Optics , 127 (2008).
- D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett. 95, 230504 (2005).
- D. Kribs, R. Laflamme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett. 94, 180501 (2005).
- H. Bombín, Topological subsystem codes, Phys. Rev. A 81, 032301 (2010).
- O. Higgott and N. P. Breuckmann, Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead, Phys. Rev. X 11, 031039 (2021).
- S. Glancy, H. M. Vasconcelos, and T. C. Ralph, Transmission of optical coherent-state qubits, Phys. Rev. A 70, 022317 (2004).
- P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A 59, 2631 (1999).
- T. Tyc and B. C. Sanders, Operational formulation of homodyne detection, Journal of Physics A: Mathematical and General 37, 7341 (2004).
- B. D’Anjou and W. A. Coish, Soft decoding of a qubit readout apparatus, Phys. Rev. Lett. 113, 230402 (2014).
- S. Glancy, E. Knill, and H. M. Vasconcelos, Entanglement purification of any stabilizer state, Phys. Rev. A 74, 032319 (2006).
- A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
- B. M. Terhal, Detecting quantum entanglement, Theoretical Computer Science 287, 313 (2002).
- O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
- A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58, 4394 (1998).
- C.-P. Yang, S.-I. Chu, and S. Han, Efficient many-party controlled teleportation of multiqubit quantum information via entanglement, Phys. Rev. A 70, 022329 (2004).
- C.-P. Yang and S. Han, A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network, Physics Letters A 343, 267 (2005).
- S. Choudhury, S. Muralidharan, and P. K. Panigrahi, Quantum teleportation and state sharing using a genuinely entangled six-qubit state, J. Phys. A: Math. Theor. 42, 115303 (2009).
- X.-H. Li and S. Ghose, Control power in perfect controlled teleportation via partially entangled channels, Phys. Rev. A 90, 052305 (2014).
- X.-H. Li and S. Ghose, Analysis of n-qubit perfect controlled teleportation schemes from the controller’s point of view, Phys. Rev. A 91, 012320 (2015).
- S. Popescu, Bell’s inequalities versus teleportation: What is nonlocality?, Phys. Rev. Lett. 72, 797 (1994).
- D. Bruß and C. Macchiavello, Optimal state estimation for d-dimensional quantum systems, Phys. Rev. A 253, 249 (1999).
- A. Acín, J. Latorre, and P. Pascual, Optimal generalized quantum measurements for arbitrary spin systems, Phys. Rev. A 61, 022113 (2000).
- K. Fukui, A. Tomita, and A. Okamoto, Analog quantum error correction with encoding a qubit into an oscillator, Phys. Rev. Lett. 119, 180507 (2017).
- M. Bergmann and P. van Loock, Quantum error correction against photon loss using multicomponent cat states, Phys. Rev. A 94, 042332 (2016).
- Z. McIntyre and W. A. Coish, Non-Markovian transient spectroscopy in cavity QED, Phys. Rev. Res. 4, L042039 (2022).
- S. Bravyi, D. Poulin, and B. Terhal, Tradeoffs for reliable quantum information storage in 2d systems, Phys. Rev. Lett. 104, 050503 (2010).
- N. P. Breuckmann and J. N. Eberhardt, Quantum low-density parity-check codes, PRX Quantum 2, 040101 (2021).
- N. Baspin and A. Krishna, Quantifying nonlocality: How outperforming local quantum codes is expensive, Phys. Rev. Lett. 129, 050505 (2022).