Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flying-cat parity checks for quantum error correction (2402.17001v2)

Published 26 Feb 2024 in quant-ph

Abstract: Long range, multi-qubit parity checks have applications in both quantum error correction and measurement-based entanglement generation. Such parity checks could be performed using qubit-state-dependent phase shifts on propagating pulses of light described by coherent states $\vert\alpha\rangle$ of the electromagnetic field. We consider "flying-cat" parity checks based on an entangling operation that is quantum non-demolition (QND) for Schr\"odinger's cat states $\vert\alpha\rangle\pm \vert-\alpha\rangle$. This operation encodes parity information in the phase of maximally distinguishable coherent states $\vert\pm \alpha\rangle$, which can be read out using a phase-sensitive measurement of the electromagnetic field. In contrast to many implementations, where single-qubit errors and measurement errors can be treated as independent, photon loss during flying-cat parity checks introduces errors on physical qubits at a rate that is anti-correlated with the probability for measurement errors. We analyze this trade-off for three-qubit parity checks, which are a requirement for universal fault-tolerant quantum computing with the subsystem surface code. We further show how a six-qubit entangled "tetrahedron" state can be prepared using these three-qubit parity checks. The tetrahedron state can be used as a resource for controlled quantum teleportation of a two-qubit state, or as a source of shared randomness with potential applications in three-party quantum key distribution. Finally, we provide conditions for performing high-quality flying-cat parity checks in a state-of-the-art circuit QED architecture, accounting for qubit decoherence, internal cavity losses, and finite-duration pulses, in addition to transmission losses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. A. Reiserer and G. Rempe, Cavity-based quantum networks with single atoms and optical photons, Rev. Mod. Phys. 87, 1379 (2015).
  2. N. H. Nickerson, Y. Li, and S. C. Benjamin, Topological quantum computing with a very noisy network and local error rates approaching one percent, Nat. Comm. 4, 1756 (2013).
  3. N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links, Phys. Rev. X 4, 041041 (2014).
  4. S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, arXiv preprint quant-ph/9811052  (1998).
  5. A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-threshold universal quantum computation on the surface code, Phys. Rev. A 80, 052312 (2009).
  6. D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
  7. A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098 (1996).
  8. A. Steane, Multiple-particle interference and quantum error correction, Proc. R. Soc. London, Ser. A 452, 2551 (1996).
  9. D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999).
  10. S. E. Nigg, A. Fuhrer, and D. Loss, Superconducting grid-bus surface code architecture for hole-spin qubits, Phys. Rev. Lett.  118, 147701 (2017).
  11. C. Leroux, A. Di Paolo, and A. Blais, Superconducting coupler with exponentially large on: off ratio, Phys. Rev. Appl. 16, 064062 (2021).
  12. L. Trifunovic, F. L. Pedrocchi, and D. Loss, Long-distance entanglement of spin qubits via ferromagnet, Phys. Rev. X 3, 041023 (2013).
  13. L. Tornberg and G. Johansson, High-fidelity feedback-assisted parity measurement in circuit qed, Phys. Rev. A 82, 012329 (2010).
  14. K. Lalumiere, J. M. Gambetta, and A. Blais, Tunable joint measurements in the dispersive regime of cavity qed, Phys. Rev. A 81, 040301 (2010).
  15. S. E. Nigg and S. M. Girvin, Stabilizer quantum error correction toolbox for superconducting qubits, Phys. Rev. Lett.  110, 243604 (2013).
  16. D. P. DiVincenzo and F. Solgun, Multi-qubit parity measurement in circuit quantum electrodynamics, New J. Phys. 15, 075001 (2013).
  17. B. Royer, S. Puri, and A. Blais, Qubit parity measurement by parametric driving in circuit qed, Sci. Adv. 4, eaau1695 (2018).
  18. L.-M. Duan and H. J. Kimble, Scalable photonic quantum computation through cavity-assisted interactions, Physical review letters 92, 127902 (2004).
  19. B. Wang and L.-M. Duan, Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction, Phys. Rev. A 72, 022320 (2005).
  20. F. Yamaguchi, K. Nemoto, and W. J. Munro, Quantum error correction via robust probe modes, Phys. Rev. A 73, 060302 (2006).
  21. D. F. Walls and G. J. Milburn, Input–output formulation of optical cavities, Quantum Optics , 127 (2008).
  22. D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett.  95, 230504 (2005).
  23. D. Kribs, R. Laflamme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett.  94, 180501 (2005).
  24. H. Bombín, Topological subsystem codes, Phys. Rev. A 81, 032301 (2010).
  25. O. Higgott and N. P. Breuckmann, Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead, Phys. Rev. X 11, 031039 (2021).
  26. S. Glancy, H. M. Vasconcelos, and T. C. Ralph, Transmission of optical coherent-state qubits, Phys. Rev. A 70, 022317 (2004).
  27. P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A 59, 2631 (1999).
  28. T. Tyc and B. C. Sanders, Operational formulation of homodyne detection, Journal of Physics A: Mathematical and General 37, 7341 (2004).
  29. B. D’Anjou and W. A. Coish, Soft decoding of a qubit readout apparatus, Phys. Rev. Lett.  113, 230402 (2014).
  30. S. Glancy, E. Knill, and H. M. Vasconcelos, Entanglement purification of any stabilizer state, Phys. Rev. A 74, 032319 (2006).
  31. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
  32. B. M. Terhal, Detecting quantum entanglement, Theoretical Computer Science 287, 313 (2002).
  33. O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
  34. A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58, 4394 (1998).
  35. C.-P. Yang, S.-I. Chu, and S. Han, Efficient many-party controlled teleportation of multiqubit quantum information via entanglement, Phys. Rev. A 70, 022329 (2004).
  36. C.-P. Yang and S. Han, A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network, Physics Letters A 343, 267 (2005).
  37. S. Choudhury, S. Muralidharan, and P. K. Panigrahi, Quantum teleportation and state sharing using a genuinely entangled six-qubit state, J. Phys. A: Math. Theor. 42, 115303 (2009).
  38. X.-H. Li and S. Ghose, Control power in perfect controlled teleportation via partially entangled channels, Phys. Rev. A 90, 052305 (2014).
  39. X.-H. Li and S. Ghose, Analysis of n-qubit perfect controlled teleportation schemes from the controller’s point of view, Phys. Rev. A 91, 012320 (2015).
  40. S. Popescu, Bell’s inequalities versus teleportation: What is nonlocality?, Phys. Rev. Lett.  72, 797 (1994).
  41. D. Bruß and C. Macchiavello, Optimal state estimation for d-dimensional quantum systems, Phys. Rev. A 253, 249 (1999).
  42. A. Acín, J. Latorre, and P. Pascual, Optimal generalized quantum measurements for arbitrary spin systems, Phys. Rev. A 61, 022113 (2000).
  43. K. Fukui, A. Tomita, and A. Okamoto, Analog quantum error correction with encoding a qubit into an oscillator, Phys. Rev. Lett. 119, 180507 (2017).
  44. M. Bergmann and P. van Loock, Quantum error correction against photon loss using multicomponent cat states, Phys. Rev. A 94, 042332 (2016).
  45. Z. McIntyre and W. A. Coish, Non-Markovian transient spectroscopy in cavity QED, Phys. Rev. Res. 4, L042039 (2022).
  46. S. Bravyi, D. Poulin, and B. Terhal, Tradeoffs for reliable quantum information storage in 2d systems, Phys. Rev. Lett.  104, 050503 (2010).
  47. N. P. Breuckmann and J. N. Eberhardt, Quantum low-density parity-check codes, PRX Quantum 2, 040101 (2021).
  48. N. Baspin and A. Krishna, Quantifying nonlocality: How outperforming local quantum codes is expensive, Phys. Rev. Lett.  129, 050505 (2022).

Summary

We haven't generated a summary for this paper yet.