Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Froggatt-Nielsen Meets the SMEFT (2402.16940v2)

Published 26 Feb 2024 in hep-ph

Abstract: We study the matching of Froggatt-Nielsen theories of flavour onto the Standard Model Effective Field Theory (SMEFT), upon integrating out a heavy Beyond-the-Standard-Model (BSM) scalar `flavon' whose vacuum expectation value breaks an Abelian flavour symmetry at energies $\Lambda_\text{FN}$ well above the electroweak scale, $\Lambda_\text{FN} > \Lambda_\text{SM}$. We include matching contributions to the infrared $d_\text{SM}=6$ (Warsaw basis) SMEFT sourced from ultraviolet contact terms suppressed up to order $1 / \Lambda_\text{UV}2$ in the Froggatt-Nielsen Lagrangian, where $\Lambda_\text{UV} > \Lambda_\text{FN}$ is an arbitrary deep-ultraviolet scale where further unspecified BSM particles are dynamical. This includes tree-level (one-loop) ultraviolet diagrams with $d_{\text{FN}}=6$ $(5)$ effective vertices. We first do so with a toy model, but then generalize our findings to arbitrary Frogatt-Nielsen charges. Our results indicate a rich and non-trivial signature of Froggatt-Nielsen theories on the (otherwise) model-independent operators of the SMEFT, and we briefly speculate on extending our analysis to broader classes of BSM flavour models, e.g. non-Abelian and/or gauged theories. We thus take an important step towards determining how to use rapidly developing theoretical and experimental SMEFT technologies to gain unambiguous insight into the SM's longstanding fermion flavour puzzle.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (109)
  1. Hierarchy of Quark Masses, Cabibbo Angles and CP Violation. Nucl. Phys. B, 147:277–298, 1979.
  2. R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
  3. The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP, 09:178, 2020.
  4. Chiral Froggatt-Nielsen models, gauge anomalies and flavourful axions. JHEP, 01:191, 2020.
  5. Flavonstrahlung in the B33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT−-- L22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Z’ model at current and future colliders. JHEP, 03:253, 2023.
  6. Mapping and Probing Froggatt-Nielsen Solutions to the Quark Flavor Puzzle. 6 2023.
  7. W. Buchmuller and D. Wyler. Effective Lagrangian Analysis of New Interactions and Flavor Conservation. Nucl. Phys. B, 268:621–653, 1986.
  8. Dimension-Six Terms in the Standard Model Lagrangian. JHEP, 10:085, 2010.
  9. The Standard Model as an Effective Field Theory. Phys. Rept., 793:1–98, 2019.
  10. The Standard Model effective field theory at work. 3 2023.
  11. Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox. Phys. Rev. D, 91:105014, 2015.
  12. Steven Weinberg. Baryon and Lepton Nonconserving Processes. Phys. Rev. Lett., 43:1566–1570, 1979.
  13. Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory. JHEP, 04:279, 2021.
  14. Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC. JHEP, 11:089, 2021.
  15. A new generation of simultaneous fits to LHC data using deep learning. JHEP, 05:032, 2022.
  16. To Profile or To Marginalize – A SMEFT Case Study. 8 2022.
  17. Compilation of low-energy constraints on 4-fermion operators in the SMEFT. JHEP, 08:123, 2017.
  18. Flavourful SMEFT likelihood for Higgs and electroweak data. JHEP, 04:066, 2020.
  19. CP Violation in Higgs-Gauge Interactions: From Tabletop Experiments to the LHC. Phys. Rev. Lett., 123(5):051801, 2019.
  20. The impact of flavour data on global fits of the MFV SMEFT. JHEP, 12:113, 2020.
  21. Top and Beauty synergies in SMEFT-fits at present and future colliders. JHEP, 06:010, 2021.
  22. Charged Lepton Flavor Violation at the EIC. JHEP, 03:256, 2021.
  23. The importance of flavor in SMEFT Electroweak Precision Fits. JHEP, 05:208, 2023.
  24. More Synergies from Beauty, Top, Z𝑍Zitalic_Z and Drell-Yan Measurements in SMEFT. 4 2023.
  25. Drell-Yan tails beyond the Standard Model. JHEP, 03:064, 2023.
  26. New Physics in CP Violating and Flavour Changing Quark Dipole Transitions. 6 2023.
  27. New Physics in the Third Generation: A Comprehensive SMEFT Analysis and Future Prospects. 10 2023.
  28. Integrating out heavy particles with functional methods: a simplified framework. JHEP, 09:156, 2016.
  29. Functional Prescription for EFT Matching. JHEP, 02:228, 2021.
  30. A proof of concept for matchete: an automated tool for matching effective theories. Eur. Phys. J. C, 83(7):662, 2023.
  31. The CKM parameters in the SMEFT. JHEP, 05:172, 2019.
  32. Matching for FCNC effects in the flavour-symmetric SMEFT. JHEP, 06:029, 2019.
  33. Baryon Number, Lepton Number, and Operator Dimension in the SMEFT with Flavor Symmetries. Phys. Lett. B, 800:135132, 2020.
  34. Flavour violating effects of Yukawa running in SMEFT. JHEP, 09:187, 2020.
  35. Flavour symmetries in the SMEFT. JHEP, 08:166, 2020.
  36. The Flavor of UV Physics. JHEP, 05:257, 2021.
  37. Modular symmetry in the SMEFT. Phys. Rev. D, 105(5):055022, 2022.
  38. Dirac masses and mixings in the (geo)SM(EFT) and beyond. JHEP, 11:009, 2021.
  39. Beyond Jarlskog: 699 invariants for CP violation in SMEFT. JHEP, 08:032, 2022.
  40. Flavour alignment of New Physics in light of the (g −-- 2)μ𝜇{}_{\mu}start_FLOATSUBSCRIPT italic_μ end_FLOATSUBSCRIPT anomaly. JHEP, 03:011, 2022.
  41. Adding Flavor to the SMEFT. JHEP, 10:010, 2022.
  42. Flavorful electroweak precision observables in the Standard Model effective field theory. Phys. Rev. D, 105(7):073006, 2022.
  43. Resolving the flavor structure in the MFV-SMEFT. JHEP, 02:225, 2023.
  44. Building blocks of the flavourful SMEFT RG. JHEP, 03:226, 2023.
  45. Leading directions in the SMEFT. JHEP, 09:009, 2023.
  46. Opportunistic CP violation. JHEP, 06:141, 2023.
  47. U(2) is Right for Leptons and Left for Quarks. 11 2023.
  48. Minimal axion model from flavor. Phys. Rev. D, 95(9):095009, 2017.
  49. Flaxion: a minimal extension to solve puzzles in the standard model. JHEP, 01:096, 2017.
  50. Anomaly free Froggatt-Nielsen models of flavor. JHEP, 10:188, 2019. [Erratum: JHEP 02, 033 (2022)].
  51. Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory. Phys. Lett. B, 149:117–122, 1984.
  52. Discrete gauge symmetry anomalies. Phys. Lett. B, 260:291–295, 1991.
  53. Should discrete symmetries be anomaly free? 1 1991.
  54. Note on discrete gauge anomalies. Phys. Rev. D, 45:1424–1427, 1992.
  55. Takeshi Araki. Anomaly of Discrete Symmetries and Gauge Coupling Unification. Prog. Theor. Phys., 117:1119–1138, 2007.
  56. (Non-)Abelian discrete anomalies. Nucl. Phys. B, 805:124–147, 2008.
  57. Non-Abelian Discrete Symmetries in Particle Physics. Prog. Theor. Phys. Suppl., 183:1–163, 2010.
  58. Anomaly-safe discrete groups. Phys. Lett. B, 747:22–26, 2015.
  59. Jim Talbert. Pocket Formulae for Non-Abelian Discrete Anomaly Freedom. Phys. Lett. B, 786:426–431, 2018.
  60. Ben Gripaios. Gauge anomalies of finite groups. Phys. Rev. D, 105(10):105008, 2022.
  61. Anomalies of non-Abelian finite groups via cobordism. JHEP, 09:147, 2022.
  62. Discrete Gauge Symmetry in Continuum Theories. Phys. Rev. Lett., 62:1221, 1989.
  63. Unification of Flavor, CP, and Modular Symmetries. Phys. Lett. B, 795:7–14, 2019.
  64. A String Theory of Flavor and 𝒞⁢𝒫𝒞𝒫\mathscr{CP}script_C script_P. Nucl. Phys. B, 947:114737, 2019.
  65. Top-down anatomy of flavor symmetry breakdown. Phys. Rev. D, 105(5):055018, 2022.
  66. L. F. Abbott. Introduction to the Background Field Method. Acta Phys. Polon. B, 13:33, 1982.
  67. SuperTracer: A Calculator of Functional Supertraces for One-Loop EFT Matching. JHEP, 04:281, 2021.
  68. Matchmakereft: automated tree-level and one-loop matching. SciPost Phys., 12(6):198, 2022.
  69. Evanescent operators in one-loop matching computations. JHEP, 02:031, 2023.
  70. Yukawa textures with an anomalous horizontal Abelian symmetry. Nucl. Phys. B, 477:353–377, 1996.
  71. Quark and lepton mass matrices from horizontal U(1) symmetry. Phys. Lett. B, 387:99–106, 1996.
  72. Complete one-loop matching for a singlet scalar in the Standard Model EFT. JHEP, 02:031, 2019. [Erratum: JHEP 01, 135 (2021)].
  73. Singlet night in Feynman-ville: one-loop matching of a real scalar. JHEP, 04:164, 2020. [Erratum: JHEP 07, 066 (2020)].
  74. Extending the Universal One-Loop Effective Action: Heavy-Light Coefficients. JHEP, 08:054, 2017.
  75. Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology. JHEP, 04:159, 2014.
  76. Joshua Ellis. TikZ-Feynman: Feynman diagrams with TikZ. Comput. Phys. Commun., 210:103–123, 2017.
  77. Erratum to: Complete one-loop matching for a singlet scalar in the standard model eft. Journal of High Energy Physics, 2021(1):135, 2021.
  78. Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching. JHEP, 03:016, 2018. [Erratum: JHEP 12, 043 (2023)].
  79. Low-energy effective field theory below the electroweak scale: matching at one loop. JHEP, 10:197, 2019. [Erratum: JHEP 11, 148 (2022)].
  80. Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence. JHEP, 10:087, 2013.
  81. Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence. JHEP, 01:035, 2014.
  82. …, 83106786, 114382724, 1509048322, 2343463290, 27410087742, … efficient Hilbert series for effective theories. Phys. Lett. B, 808:135632, 2020.
  83. Discrete symmetries and efficient counting of operators. JHEP, 05:215, 2023.
  84. Hilbert series and operator bases with derivatives in effective field theories. Commun. Math. Phys., 347(2):363–388, 2016.
  85. 2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT. JHEP, 08:016, 2017. [Erratum: JHEP 09, 019 (2019)].
  86. Operator bases, S𝑆Sitalic_S-matrices, and their partition functions. JHEP, 10:199, 2017.
  87. An operator basis for the Standard Model with an added scalar singlet. JHEP, 08:103, 2016.
  88. Minimal flavor violation: An Effective field theory approach. Nucl. Phys. B, 645:155–187, 2002.
  89. A Global Likelihood for Precision Constraints and Flavour Anomalies. Eur. Phys. J. C, 79(6):509, 2019.
  90. Peter Minkowski. μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays? Phys. Lett. B, 67:421–428, 1977.
  91. A Unified Model of Quarks and Leptons with a Universal Texture Zero. JHEP, 03:007, 2018.
  92. Revisiting the universal texture zero of flavour: a Markov chain Monte Carlo analysis. Eur. Phys. J. C, 83(6):479, 2023.
  93. SU(3) family symmetry and neutrino bi-tri-maximal mixing. Nucl. Phys. B, 733:31–47, 2006.
  94. Geometrical CP Violation from Non-Renormalisable Scalar Potentials. Phys. Lett. B, 716:193–196, 2012.
  95. Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions. Nucl. Phys. B, 720:64–88, 2005.
  96. Tri-bimaximal neutrino mixing, A(4) and the modular symmetry. Nucl. Phys. B, 741:215–235, 2006.
  97. Underlying A(4) symmetry for the neutrino mass matrix and the quark mixing matrix. Phys. Lett. B, 552:207–213, 2003.
  98. Fermion masses and mixing angles from SU(3) family symmetry. Phys. Lett. B, 520:243–253, 2001.
  99. Fermion masses and mixing angles from SU (3) family symmetry and unification. Phys. Lett. B, 574:239–252, 2003.
  100. SO(3) family symmetry and axions. Phys. Rev. D, 98(9):095008, 2018.
  101. ALP — SMEFT interference. JHEP, 06:135, 2021.
  102. Effective description of general extensions of the Standard Model: the complete tree-level dictionary. JHEP, 03:109, 2018.
  103. Christopher W. Murphy. Dimension-8 operators in the Standard Model Eective Field Theory. JHEP, 10:174, 2020.
  104. Complete set of dimension-eight operators in the standard model effective field theory. Phys. Rev. D, 104(1):015026, 2021.
  105. The Geometric Standard Model Effective Field Theory. JHEP, 03:163, 2020.
  106. Frame covariant formalism for fermionic theories. Eur. Phys. J. C, 81(7):572, 2021.
  107. Jim Talbert. The geometric ν𝜈\nuitalic_νSMEFT: operators and connections. JHEP, 01:069, 2023.
  108. Minimal supergeometric quantum field theories. Phys. Lett. B, 846:138234, 2023.
  109. Fermion geometry and the renormalization of the Standard Model Effective Field Theory. JHEP, 11:201, 2023.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com