Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimize Control Inputs for Strong Structural Controllability Using Reinforcement Learning with Graph Neural Network (2402.16925v1)

Published 26 Feb 2024 in cs.LG and cs.AI

Abstract: Strong structural controllability (SSC) guarantees networked system with linear-invariant dynamics controllable for all numerical realizations of parameters. Current research has established algebraic and graph-theoretic conditions of SSC for zero/nonzero or zero/nonzero/arbitrary structure. One relevant practical problem is how to fully control the system with the minimal number of input signals and identify which nodes must be imposed signals. Previous work shows that this optimization problem is NP-hard and it is difficult to find the solution. To solve this problem, we formulate the graph coloring process as a Markov decision process (MDP) according to the graph-theoretical condition of SSC for both zero/nonzero and zero/nonzero/arbitrary structure. We use Actor-critic method with Directed graph neural network which represents the color information of graph to optimize MDP. Our method is validated in a social influence network with real data and different complex network models. We find that the number of input nodes is determined by the average degree of the network and the input nodes tend to select nodes with low in-degree and avoid high-degree nodes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. R. E. Kalman, “Mathematical description of linear dynamical systems,” Journal of the Society for Industrial and Applied Mathematics, Series A: Control, vol. 1, no. 2, pp. 152–192, 1963.
  2. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex networks,” nature, vol. 473, no. 7346, pp. 167–173, 2011.
  3. H. Mayeda and T. Yamada, “Strong structural controllability,” SIAM Journal on Control and Optimization, vol. 17, no. 1, pp. 123–138, 1979.
  4. K. Reinschke, F. Svaricek, and H.-D. Wend, “On strong structural controllability of linear systems,” in [1992] Proceedings of the 31st IEEE Conference on Decision and Control.   IEEE, 1992, pp. 203–208.
  5. M. Trefois and J.-C. Delvenne, “Zero forcing number, constrained matchings and strong structural controllability,” Linear Algebra and its Applications, vol. 484, pp. 199–218, 2015.
  6. J. Jia, H. J. Van Waarde, H. L. Trentelman, and M. K. Camlibel, “A unifying framework for strong structural controllability,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 391–398, 2020.
  7. A. Olshevsky, “Minimum input selection for structural controllability,” in 2015 American control conference (ACC).   IEEE, 2015, pp. 2218–2223.
  8. S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural input/output and control configuration selection in large-scale systems,” IEEE Transactions on Automatic Control, vol. 61, no. 2, pp. 303–318, 2015.
  9. S. Moothedath, P. Chaporkar, and M. N. Belur, “A flow-network-based polynomial-time approximation algorithm for the minimum constrained input structural controllability problem,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 3151–3158, 2018.
  10. A. Chapman and M. Mesbahi, “On strong structural controllability of networked systems: A constrained matching approach,” in 2013 American control conference.   IEEE, 2013, pp. 6126–6131.
  11. S. Pequito, N. Popli, S. Kar, M. D. Ilić, and A. P. Aguiar, “A framework for actuator placement in large scale power systems: Minimal strong structural controllability,” in 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).   IEEE, 2013, pp. 416–419.
  12. K. Yashashwi, S. Moothedath, and P. Chaporkar, “Minimizing inputs for strong structural controllability,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 2048–2053.
  13. I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial optimization with reinforcement learning,” arXiv preprint arXiv:1611.09940, 2016.
  14. M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement learning for solving the vehicle routing problem,” Advances in neural information processing systems, vol. 31, 2018.
  15. Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and A. A. Cire, “Combining reinforcement learning and constraint programming for combinatorial optimization,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, 2021, pp. 3677–3687.
  16. E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over graphs,” Advances in neural information processing systems, vol. 30, 2017.
  17. T. Barrett, W. Clements, J. Foerster, and A. Lvovsky, “Exploratory combinatorial optimization with reinforcement learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 3243–3250.
  18. S. Gu and Y. Yang, “A deep learning algorithm for the max-cut problem based on pointer network structure with supervised learning and reinforcement learning strategies,” Mathematics, vol. 8, no. 2, p. 298, 2020.
  19. L. Duan, H. Hu, Y. Qian, Y. Gong, X. Zhang, J. Wei, and Y. Xu, “A multi-task selected learning approach for solving 3d flexible bin packing problem,” in Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, 2019, pp. 1386–1394.
  20. A. Laterre, Y. Fu, M. Jabri, A. Cohen, D. Kas, K. Hajjar, T. Dahl, A. Kerkeni, and K. Beguir, “Ranked reward: Enabling self-play reinforcement learning for combinatorial optimization,” Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018.
  21. Q. Que, F. Yang, and D. Zhang, “Solving 3d packing problem using transformer network and reinforcement learning,” Expert Systems with Applications, vol. 214, p. 119153, 2023.
  22. J. Song, R. Lanka, Y. Yue, and M. Ono, “Co-training for policy learning,” in Uncertainty in Artificial Intelligence.   PMLR, 2020, pp. 1191–1201.
  23. S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh, “Gcomb: Learning budget-constrained combinatorial algorithms over billion-sized graphs,” Advances in Neural Information Processing Systems, vol. 33, pp. 20 000–20 011, 2020.
  24. Y. Yazıcıoğlu, M. Shabbir, W. Abbas, and X. Koutsoukos, “Strong structural controllability of networks: Comparison of bounds using distances and zero forcing,” Automatica, vol. 146, p. 110562, 2022.
  25. Z. Tong, Y. Liang, C. Sun, D. S. Rosenblum, and A. Lim, “Directed graph convolutional network,” arXiv preprint arXiv:2004.13970, 2020.
  26. J. R. French Jr, “A formal theory of social power.” Psychological review, vol. 63, no. 3, p. 181, 1956.
  27. P. ERDdS and A. R&wi, “On random graphs i,” Publ. math. debrecen, vol. 6, no. 290-297, p. 18, 1959.

Summary

We haven't generated a summary for this paper yet.