Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selective Task offloading for Maximum Inference Accuracy and Energy efficient Real-Time IoT Sensing Systems (2402.16904v1)

Published 24 Feb 2024 in cs.LG, cs.AI, and cs.NE

Abstract: The recent advancements in small-size inference models facilitated AI deployment on the edge. However, the limited resource nature of edge devices poses new challenges especially for real-time applications. Deploying multiple inference models (or a single tunable model) varying in size and therefore accuracy and power consumption, in addition to an edge server inference model, can offer a dynamic system in which the allocation of inference models to inference jobs is performed according to the current resource conditions. Therefore, in this work, we tackle the problem of selectively allocating inference models to jobs or offloading them to the edge server to maximize inference accuracy under time and energy constraints. This problem is shown to be an instance of the unbounded multidimensional knapsack problem which is considered a strongly NP-hard problem. We propose a lightweight hybrid genetic algorithm (LGSTO) to solve this problem. We introduce a termination condition and neighborhood exploration techniques for faster evolution of populations. We compare LGSTO with the Naive and Dynamic programming solutions. In addition to classic genetic algorithms using different reproduction methods including NSGA-II, and finally we compare to other evolutionary methods such as Particle swarm optimization (PSO) and Ant colony optimization (ACO). Experiment results show that LGSTO performed 3 times faster than the fastest comparable schemes while producing schedules with higher average accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. R. Singh and S. S. Gill, “Edge ai: a survey,” Internet of Things and Cyber-Physical Systems, 2023.
  2. G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth et al., “Gemini: a family of highly capable multimodal models,” arXiv preprint arXiv:2312.11805, 2023.
  3. Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and G. Wu, “Energy-aware inference offloading for dnn-driven applications in mobile edge clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 4, pp. 799–814, 2020.
  4. A. Fresa and J. P. Champati, “Offloading algorithms for maximizing inference accuracy on edge device under a time constraint,” arXiv preprint arXiv:2112.11413, 2021.
  5. E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating deep neural network inference via edge computing,” IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.
  6. N. Abdenacer, N. N. Abdelkader, A. Qammar, F. Shi, H. Ning, and S. Dhelim, “Task Offloading for Smart Glasses in Healthcare: Enhancing Detection of Elevated Body Temperature,” in 2023 IEEE International Conference on Smart Internet of Things (SmartIoT).   IEEE, aug 2023, pp. 243–250. [Online]. Available: https://ieeexplore.ieee.org/document/10296320/
  7. A. Naouri, N. A. Nouri, S. Dhelim, A. Khelloufi, A. B. Sada, and H. Ning, “Efficient Fog Node Placement using Nature-Inspired Metaheuristic for IoT Applications,” 2023. [Online]. Available: https://arxiv.org/abs/2302.05948
  8. A. Ben Sada, A. Naouri, A. Khelloufi, S. Dhelim, and H. Ning, “A Context-Aware Edge Computing Framework for Smart Internet of Things,” Future Internet, vol. 15, no. 5, p. 154, apr 2023. [Online]. Available: https://www.mdpi.com/1999-5903/15/5/154
  9. A. Khelloufi, H. Ning, A. B. Sada, A. Naouri, and S. Dhelim, “Context-Aware Service Recommendation System for the Social Internet of Things,” 2023. [Online]. Available: https://arxiv.org/abs/2308.08499
  10. V. Cacchiani, M. Iori, A. Locatelli, and S. Martello, “Knapsack problems—an overview of recent advances. part ii: Multiple, multidimensional, and quadratic knapsack problems,” Computers & Operations Research, vol. 143, p. 105693, 2022.
  11. I. Nikoloska and N. Zlatanov, “Data selection scheme for energy efficient supervised learning at iot nodes,” IEEE Communications Letters, vol. 25, no. 3, pp. 859–863, 2020.
  12. X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-efficient offloading for dnn-based smart iot systems in cloud-edge environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp. 683–697, 2021.
  13. V. Cozzolino, L. Tonetto, N. Mohan, A. Y. Ding, and J. Ott, “Nimbus: Towards latency-energy efficient task offloading for ar services,” IEEE Transactions on Cloud Computing, 2022.
  14. A. Sacco, F. Esposito, and G. Marchetto, “Resource inference for sustainable and responsive task offloading in challenged edge networks,” IEEE Transactions on Green Communications and Networking, vol. 5, no. 3, pp. 1114–1127, 2021.
  15. J. Wu, Z. Yu, J. Guo, Z. Tang, T. Wang, and W. Jia, “A fast task offloading optimization framework for irs-assisted multi-access edge computing system,” arXiv preprint arXiv:2307.08474, 2023.
  16. N. Abdenacer, N. N. Abdelkader, A. Qammar, F. Shi, H. Ning, and S. Dhelim, “Task offloading for smart glasses in healthcare: Enhancing detection of elevated body temperature,” in 2023 IEEE International Conference on Smart Internet of Things (SmartIoT).   IEEE, 2023, pp. 243–250.
  17. S. Chaib, D. E. K. Mansouri, I. Omara, A. Hagag, S. Dhelim, and D. A. Bensaber, “On the Co-Selection of Vision Transformer Features and Images for Very High-Resolution Image Scene Classification,” Remote Sensing, vol. 14, no. 22, p. 5817, nov 2022. [Online]. Available: https://www.mdpi.com/2072-4292/14/22/5817
  18. N. Aung, T. Kechadi, L. Chen, and S. Dhelim, “IP-UNet: Intensity Projection UNet Architecture for 3D Medical Volume Segmentation,” 2023. [Online]. Available: https://arxiv.org/abs/2308.12761
  19. N. Aung, S. Dhelim, L. Chen, A. Lakas, W. Zhang, H. Ning, S. Chaib, and M. T. Kechadi, “VeSoNet: Traffic-Aware Content Caching for Vehicular Social Networks Using Deep Reinforcement Learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 8, pp. 8638–8649, aug 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10070376/
  20. N. Aung, W. Zhang, S. Dhelim, and Y. Ai, “T-Coin: Dynamic Traffic Congestion Pricing System for the Internet of Vehicles in Smart Cities,” Information, vol. 11, no. 3, p. 149, mar 2020. [Online]. Available: https://www.mdpi.com/2078-2489/11/3/149
  21. W. Zhang, N. Aung, S. Dhelim, and Y. Ai, “DIFTOS: A Distributed Infrastructure-Free Traffic Optimization System Based on Vehicular Ad Hoc Networks for Urban Environments,” Sensors, vol. 18, no. 8, p. 2567, aug 2018. [Online]. Available: http://www.mdpi.com/1424-8220/18/8/2567
  22. S. Dhelim, L. Chen, S. K. Das, H. Ning, C. Nugent, G. Leavey, D. Pesch, E. Bantry-White, and D. Burns, “Detecting Mental Distresses Using Social Behavior Analysis in the Context of COVID-19: A Survey,” ACM Computing Surveys, vol. 55, no. 14s, pp. 1–30, dec 2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3589784
  23. S. Dhelim, L. Chen, H. Ning, and C. Nugent, “Artificial intelligence for suicide assessment using Audiovisual Cues: a review,” Artificial Intelligence Review, vol. 56, no. 6, pp. 5591–5618, jun 2023. [Online]. Available: https://link.springer.com/10.1007/s10462-022-10290-6
  24. S. Dhelim, L. Chen, N. Aung, W. Zhang, and H. Ning, “A hybrid personality-aware recommendation system based on personality traits and types models,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 9, pp. 12 775–12 788, sep 2023. [Online]. Available: https://link.springer.com/10.1007/s12652-022-04200-5
  25. S. Dhelim, H. Ning, and N. Aung, “ComPath: User Interest Mining in Heterogeneous Signed Social Networks for Internet of People,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 7024–7035, apr 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9253614/
  26. D. Wei, F. Shi, and S. Dhelim, “A Self-Supervised Learning Model for Unknown Internet Traffic Identification Based on Surge Period,” Future Internet, vol. 14, no. 10, p. 289, oct 2022. [Online]. Available: https://www.mdpi.com/1999-5903/14/10/289
  27. N. Aung, S. Dhelim, H. Ning, A. Kerrache, S. Boumaraf, L. Chen, and M.-T. Kechadi, “Web3-enabled Metaverse: The Internet of Digital Twins in a Decentralised Metaverse,” Techrxiv, jan 2024. [Online]. Available: http://dx.doi.org/10.36227/techrxiv.170421448.84658585/v1
  28. N. Aung, T. Kechadi, T. Zhu, S. Zerdoumi, T. Guerbouz, and S. Dhelim, “Blockchain Application on the Internet of Vehicles (IoV),” 2022 IEEE 7th International Conference on Intelligent Transportation Engineering (ICITE), pp. 586–591, nov 2022. [Online]. Available: https://ieeexplore.ieee.org/document/10101404/
  29. S. Dhelim, H. Ning, and T. Zhu, “STLF: Spatial-temporal-logical knowledge representation and object mapping framework,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).   IEEE, oct 2016, pp. 001 550–001 554. [Online]. Available: http://ieeexplore.ieee.org/document/7844459/
  30. Z. Li and Q. Zhu, “Genetic algorithm-based optimization of offloading and resource allocation in mobile-edge computing,” Information, vol. 11, no. 2, p. 83, 2020.
  31. A. E. Ezugwu, V. Pillay, D. Hirasen, K. Sivanarain, and M. Govender, “A comparative study of meta-heuristic optimization algorithms for 0–1 knapsack problem: Some initial results,” IEEE Access, vol. 7, pp. 43 979–44 001, 2019.
  32. O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching networks for one shot learning,” 2017.
  33. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.
  34. N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for efficient cnn architecture design,” 2018.
  35. S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” 2017.
  36. T. Instruments, “An-1540 power measurement of ethernet physical layer products,” 2013. [Online]. Available: www.ti.com
  37. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

Summary

We haven't generated a summary for this paper yet.