Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Tuning Network Control Architectures with Joint Sensor and Actuator Selection (2402.16861v1)

Published 19 Jan 2024 in eess.SY and cs.SY

Abstract: We formulate a mathematical framework for designing a self-tuning network control architecture, and propose a computationally-feasible greedy algorithm for online architecture optimization. In this setting, the locations of active sensors and actuators in the network, as well as the feedback control policy are jointly adapted using all available information about the network states and dynamics to optimize a performance criterion. We show that the case with full-state feedback can be solved with dynamic programming, and in the linear-quadratic setting, the optimal cost functions and policies are piecewise quadratic and piecewise linear, respectively. Our framework is extended for joint sensor and actuator selection for dynamic output feedback control with both control performance and architecture costs. For large networks where exhaustive architecture search is prohibitive, we describe a greedy heuristic for actuator selection and propose a greedy swapping algorithm for joint sensor and actuator selection. Via numerical experiments, we demonstrate a dramatic performance improvement of greedy self-tuning architectures over fixed architectures. Our general formulation provides an extremely rich and challenging problem space with opportunities to apply a wide variety of approximation methods from stochastic control, system identification, reinforcement learning, and static architecture design for practical model-based control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. M. Annaswamy, K. H. Johansson, and G. J. Pappas, “Control for Societal-scale Challenges: Road Map 2030,” 2023. [Online]. Available: https://www.ieeecss.org/control-societal-scale-challenges-road-map-2030
  2. A. Olshevsky, “Minimal controllability problems,” IEEE Transactions on Control of Network Systems, vol. 1, no. 3, pp. 249–258, 2014.
  3. F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, limitations and algorithms for complex networks,” Proceedings of the American Control Conference, vol. 1, no. Section III, pp. 3287–3292, Mar. 2014.
  4. V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal Actuator Placement with Bounds on Control Effort,” IEEE Transactions on Control of Network Systems, vol. 3, no. 1, pp. 67–78, Mar. 2016.
  5. T. H. Summers, F. L. Cortesi, and J. Lygeros, “On Submodularity and Controllability in Complex Dynamical Networks,” IEEE Transactions on Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2016.
  6. J. Ruths and D. Ruths, “Control profiles of complex networks,” Science, vol. 343, no. 6177, pp. 1373–1376, 2014.
  7. M. Hudoba de Badyn and M. Mesbahi, “H2 performance of series-parallel networks: A compositional perspective,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 354–361, Jan. 2021.
  8. D. R. Foight, M. H. de Badyn, and M. Mesbahi, “Performance and Design of Consensus on Matrix-Weighted and Time-Scaled Graphs,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1812–1822, Dec. 2020.
  9. K. Ganapathy and T. Summers, “Actuator Selection for Dynamical Networks with Multiplicative Noise,” Nov. 2022. [Online]. Available: https://www.researchgate.net/publication/365842299_Actuator_Selection_for_Dynamical_Networks_with_Multiplicative_Noise
  10. Y. Zhao, F. Pasqualetti, and J. Cortés, “Scheduling of control nodes for improved network controllability,” in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec. 2016, pp. 1859–1864.
  11. E. Nozari, F. Pasqualetti, and J. Cortés, “Time-invariant versus time-varying actuator scheduling in complex networks,” in 2017 American Control Conference (ACC), May 2017, pp. 4995–5000.
  12. M. Siami, A. Olshevsky, and A. Jadbabaie, “Deterministic and Randomized Actuator Scheduling with Guaranteed Performance Bounds,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1686–1701, May 2021.
  13. A. Olshevsky, “On a Relaxation of Time-Varying Actuator Placement,” IEEE Control Systems Letters, vol. 4, no. 3, pp. 656–661, Jul. 2020.
  14. M. Siami and A. Jadbabaie, “A separation theorem for joint sensor and actuator scheduling with guaranteed performance bounds,” Automatica, vol. 119, p. 109054, Sep. 2020.
  15. F. Fotiadis and Kyriakos. G. Vamvoudakis, “Learning-Based Actuator Placement for Uncertain Systems,” in 2021 60th IEEE Conference on Decision and Control (CDC), Dec. 2021, pp. 90–95.
  16. L. Ye, M. Chi, Z.-W. Liu, and V. Gupta, “Online Actuator Selection and Controller Design for Linear Quadratic Regulation with Unknown System Model,” Feb. 2023.
  17. T. Summers, K. Ganapathy, I. Shames, and M. H. De Badyn, “Self-Tuning Network Control Architectures,” in Proceedings of the IEEE Conference on Decision and Control, vol. 2022-December, 2022.
  18. F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital Twin in Industry: State-of-the-Art,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2405–2415, Apr. 2019.
  19. B. Guo, O. Karaca, T. H. Summers, and M. Kamgarpour, “Actuator Placement under Structural Controllability Using Forward and Reverse Greedy Algorithms,” IEEE Transactions on Automatic Control, vol. 66, no. 12, pp. 5845–5860, 2021.
  20. T. H. Summers and M. Hudoba de Badyn, “Supplementary software for ”Self-Tuning Network Control Architectures”,” ETH Zurich, Zurich, May 2023. [Online]. Available: https://gitlab.nccr-automation.ch/mbadyn/2022-self-tuning-actuators
  21. K. Ganapathy, “Architecture Selection for Self-Tuning Optimal Control of Networks - Supporting Software,” TSummersLab, Oct. 2023. [Online]. Available: https://github.com/TSummersLab/selftuning_greedy_swap_architecture
  22. D. K. Smith and D. P. Bertsekas, “Dynamic Programming and Optimal Control. Volume 1,” The Journal of the Operational Research Society, vol. 47, no. 6, 1996.

Summary

We haven't generated a summary for this paper yet.