Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resolution-Agnostic Neural Compression for High-Fidelity Portrait Video Conferencing via Implicit Radiance Fields (2402.16599v1)

Published 26 Feb 2024 in cs.CV and eess.IV

Abstract: Video conferencing has caught much more attention recently. High fidelity and low bandwidth are two major objectives of video compression for video conferencing applications. Most pioneering methods rely on classic video compression codec without high-level feature embedding and thus can not reach the extremely low bandwidth. Recent works instead employ model-based neural compression to acquire ultra-low bitrates using sparse representations of each frame such as facial landmark information, while these approaches can not maintain high fidelity due to 2D image-based warping. In this paper, we propose a novel low bandwidth neural compression approach for high-fidelity portrait video conferencing using implicit radiance fields to achieve both major objectives. We leverage dynamic neural radiance fields to reconstruct high-fidelity talking head with expression features, which are represented as frame substitution for transmission. The overall system employs deep model to encode expression features at the sender and reconstruct portrait at the receiver with volume rendering as decoder for ultra-low bandwidth. In particular, with the characteristic of neural radiance fields based model, our compression approach is resolution-agnostic, which means that the low bandwidth achieved by our approach is independent of video resolution, while maintaining fidelity for higher resolution reconstruction. Experimental results demonstrate that our novel framework can (1) construct ultra-low bandwidth video conferencing, (2) maintain high fidelity portrait and (3) have better performance on high-resolution video compression than previous works.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yifei Li (92 papers)
  2. Xiaohong Liu (117 papers)
  3. Yicong Peng (6 papers)
  4. Guangtao Zhai (231 papers)
  5. Jun Zhou (370 papers)