Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chiral phase transition and spin alignment of vector meson in the Polarized-Polyakov-loop Nambu-Jona-Lasinio model under rotation (2402.16595v2)

Published 26 Feb 2024 in hep-ph

Abstract: By using the extrapolation method, a polarized Polykov-loop potential at finite real angular velocity is constructed from the lattice results at finite imaginary angular velocity. The chiral and deconfinement phase transitions under rotation have been simultaneously investigated in the Polarized-Polyakov-loop Nambu-Jona-Lasinio (PPNJL) model. It is observed that both critical temperatures of deconfinement and chiral phase transition increase with the angular velocity, which is in consistent with lattice results. The spin alignment of vector meson has the negative deviation of $\rho_{00} -1/3$ under rotation, and the deviation in the PPNJL model is much more significant than that in the NJL model and the quark coalescence model, which revealing the important role of rotating gluons on the quark polarization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. A. Einstein and W. J. de Haas, Experimenteller Nachweis der Ampereschen Molekularstro¨¨𝑜\ddot{o}over¨ start_ARG italic_o end_ARGme, Verh. Dtsch. Phys. Ges. 17 (1915).
  2. S. J. Barnett, Magnetization by rotation, Phys. Rev. 6 (1915).
  3. S. J. Barnett, Gyromagnetic and Electron-Inertia Effects, Rev. Mod. Phys. 7, 129 (1935).
  4. F. Becattini, F. Piccinini, and J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy, Phys. Rev. C 77, 024906 (2008), arXiv:0711.1253 [nucl-th] .
  5. Z.-T. Liang and X.-N. Wang, Globally polarized quark-gluon plasma in non-central A+A collisions, Phys. Rev. Lett. 94, 102301 (2005a), [Erratum: Phys.Rev.Lett. 96, 039901 (2006)], arXiv:nucl-th/0410079 .
  6. Z.-T. Liang and X.-N. Wang, Spin alignment of vector mesons in non-central A+A collisions, Phys. Lett. B 629, 20 (2005b), arXiv:nucl-th/0411101 .
  7. L. Adamczyk et al. (STAR), Global ΛΛ\Lambdaroman_Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548, 62 (2017), arXiv:1701.06657 [nucl-ex] .
  8. J. Adam et al. (STAR), Global polarization of ΛΛ\Lambdaroman_Λ hyperons in Au+Au collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV, Phys. Rev. C 98, 014910 (2018), arXiv:1805.04400 [nucl-ex] .
  9. J. Adam et al. (STAR), Global Polarization of ΞΞ\Xiroman_Ξ and ΩΩ\Omegaroman_Ω Hyperons in Au+Au Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV, Phys. Rev. Lett. 126, 162301 (2021), [Erratum: Phys.Rev.Lett. 131, 089901 (2023)], arXiv:2012.13601 [nucl-ex] .
  10. S. Acharya et al. (ALICE), Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions, Phys. Rev. Lett. 125, 012301 (2020), arXiv:1910.14408 [nucl-ex] .
  11. M. S. Abdallah et al. (STAR), Pattern of global spin alignment of ϕitalic-ϕ\phiitalic_ϕ and K*0absent0{}^{*0}start_FLOATSUPERSCRIPT * 0 end_FLOATSUPERSCRIPT mesons in heavy-ion collisions, Nature 614, 244 (2023), arXiv:2204.02302 [hep-ph] .
  12. X.-L. Sheng, L. Oliva, and Q. Wang, What can we learn from the global spin alignment of ϕitalic-ϕ\phiitalic_ϕ mesons in heavy-ion collisions?, Phys. Rev. D 101, 096005 (2020a), arXiv:1910.13684 [nucl-th] .
  13. X.-L. Sheng, Q. Wang, and X.-N. Wang, Improved quark coalescence model for spin alignment and polarization of hadrons, Phys. Rev. D 102, 056013 (2020b), arXiv:2007.05106 [nucl-th] .
  14. B. Müller and D.-L. Yang, Anomalous spin polarization from turbulent color fields, Phys. Rev. D 105, L011901 (2022), [Erratum: Phys.Rev.D 106, 039904 (2022)], arXiv:2110.15630 [nucl-th] .
  15. D.-L. Yang, Quantum kinetic theory for spin transport of quarks with background chromo-electromagnetic fields, JHEP 06, 140, arXiv:2112.14392 [hep-ph] .
  16. K. J. Gonçalves and G. Torrieri, Spin alignment of vector mesons as a probe of spin hydrodynamics and freeze-out, Phys. Rev. C 105, 034913 (2022), arXiv:2104.12941 [nucl-th] .
  17. Z. Li, W. Zha, and Z. Tang, Rescattering effect on the measurement of K*0 spin alignment in heavy-ion collisions, Phys. Rev. C 106, 064908 (2022), arXiv:2208.12750 [nucl-th] .
  18. D. Wagner, N. Weickgenannt, and E. Speranza, Generating tensor polarization from shear stress, Phys. Rev. Res. 5, 013187 (2023), arXiv:2207.01111 [nucl-th] .
  19. A. Kumar, B. Müller, and D.-L. Yang, Spin polarization and correlation of quarks from the glasma, Phys. Rev. D 107, 076025 (2023a), arXiv:2212.13354 [nucl-th] .
  20. A. Kumar, B. Müller, and D.-L. Yang, Spin alignment of vector mesons by glasma fields, Phys. Rev. D 108, 016020 (2023b), arXiv:2304.04181 [nucl-th] .
  21. A. Kumar, P. Gubler, and D.-L. Yang, Spin alignment of vector mesons by second-order hydrodynamic gradients,   (2023c), arXiv:2312.16900 [nucl-th] .
  22. Y. Jiang and J. Liao, Pairing Phase Transitions of Matter under Rotation, Phys. Rev. Lett. 117, 192302 (2016), arXiv:1606.03808 [hep-ph] .
  23. S. Ebihara, K. Fukushima, and K. Mameda, Boundary effects and gapped dispersion in rotating fermionic matter, Phys. Lett. B 764, 94 (2017), arXiv:1608.00336 [hep-ph] .
  24. M. N. Chernodub and S. Gongyo, Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics, JHEP 01, 136, arXiv:1611.02598 [hep-th] .
  25. M. N. Chernodub and S. Gongyo, Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions, Phys. Rev. D 95, 096006 (2017b), arXiv:1702.08266 [hep-th] .
  26. F. Sun and A. Huang, Properties of strange quark matter under strong rotation, Phys. Rev. D 106, 076007 (2022), arXiv:2104.14382 [hep-ph] .
  27. F. Sun, K. Xu, and M. Huang, Splitting of chiral and deconfinement phase transitions induced by rotation, Phys. Rev. D 108, 096007 (2023), arXiv:2307.14402 [hep-ph] .
  28. H.-L. Chen, Z.-B. Zhu, and X.-G. Huang, Quark-meson model under rotation: A functional renormalization group study,   (2023), arXiv:2306.08362 [hep-ph] .
  29. N. R. F. Braga and O. C. Junqueira, Inhomogeneity of a rotating quark-gluon plasma from holography,   (2023), arXiv:2306.08653 [hep-th] .
  30. V. E. Ambruş and M. N. Chernodub, Rigidly-rotating scalar fields: between real divergence and imaginary fractalization,   (2023), arXiv:2304.05998 [hep-th] .
  31. A. A. Golubtsova and N. S. Tsegelnik, Probing the holographic model of N=4 SYM rotating quark-gluon plasma, Phys. Rev. D 107, 106017 (2023), arXiv:2211.11722 [hep-th] .
  32. Y. Chen, D. Li, and M. Huang, Inhomogeneous chiral condensation under rotation in the holographic QCD, Phys. Rev. D 106, 106002 (2022a), arXiv:2208.05668 [hep-ph] .
  33. S. Chen, K. Fukushima, and Y. Shimada, Perturbative Confinement in Thermal Yang-Mills Theories Induced by Imaginary Angular Velocity, Phys. Rev. Lett. 129, 242002 (2022b), arXiv:2207.12665 [hep-ph] .
  34. G. Yadav, Deconfinement temperature of rotating QGP at intermediate coupling from M-theory, Phys. Lett. B 841, 137925 (2023), arXiv:2203.11959 [hep-th] .
  35. N. R. F. Braga, L. F. Faulhaber, and O. C. Junqueira, Confinement-deconfinement temperature for a rotating quark-gluon plasma, Phys. Rev. D 105, 106003 (2022), arXiv:2201.05581 [hep-th] .
  36. A. A. Golubtsova, E. Gourgoulhon, and M. K. Usova, Heavy quarks in rotating plasma via holography, Nucl. Phys. B 979, 115786 (2022), arXiv:2107.11672 [hep-th] .
  37. M. N. Chernodub, Inhomogeneous confining-deconfining phases in rotating plasmas, Phys. Rev. D 103, 054027 (2021), arXiv:2012.04924 [hep-ph] .
  38. Y. Fujimoto, K. Fukushima, and Y. Hidaka, Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia, Phys. Lett. B 816, 136184 (2021), arXiv:2101.09173 [hep-ph] .
  39. J.-C. Yang and X.-G. Huang, QCD on Rotating Lattice with Staggered Fermions,   (2023), arXiv:2307.05755 [hep-lat] .
  40. M. Wei, Y. Jiang, and M. Huang, Mass splitting of vector mesons and spontaneous spin polarization under rotation *, Chin. Phys. C 46, 024102 (2022), arXiv:2011.10987 [hep-ph] .
  41. G. Cao, Effects of imaginary and real rotations on QCD matters, Phys. Rev. D 109, 014001 (2024), arXiv:2310.03310 [nucl-th] .
  42. Y. Jiang, Rotating gluon system and confinement,   (2023), arXiv:2312.06166 [hep-th] .
  43. P. N. Meisinger and M. C. Ogilvie, Chiral symmetry restoration and Z(N) symmetry, Phys. Lett. B 379, 163 (1996), arXiv:hep-lat/9512011 .
  44. P. N. Meisinger, T. R. Miller, and M. C. Ogilvie, Phenomenological equations of state for the quark gluon plasma, Phys. Rev. D 65, 034009 (2002), arXiv:hep-ph/0108009 .
  45. K. Fukushima, Chiral effective model with the Polyakov loop, Phys. Lett. B 591, 277 (2004), arXiv:hep-ph/0310121 .
  46. A. Mocsy, F. Sannino, and K. Tuominen, Confinement versus chiral symmetry, Phys. Rev. Lett. 92, 182302 (2004), arXiv:hep-ph/0308135 .
  47. E. Megias, E. Ruiz Arriola, and L. L. Salcedo, Polyakov loop in chiral quark models at finite temperature, Phys. Rev. D 74, 065005 (2006), arXiv:hep-ph/0412308 .
  48. C. Ratti, M. A. Thaler, and W. Weise, Phases of QCD: Lattice thermodynamics and a field theoretical model, Phys. Rev. D 73, 014019 (2006), arXiv:hep-ph/0506234 .
  49. K. Fukushima, Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop, Phys. Rev. D 77, 114028 (2008), [Erratum: Phys.Rev.D 78, 039902 (2008)], arXiv:0803.3318 [hep-ph] .
  50. A. Yamamoto and Y. Hirono, Lattice QCD in rotating frames, Phys. Rev. Lett. 111, 081601 (2013), arXiv:1303.6292 [hep-lat] .
  51. M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Inhomogeneity of a rotating gluon plasma and the Tolman-Ehrenfest law in imaginary time: Lattice results for fast imaginary rotation, Phys. Rev. D 107, 114502 (2023), arXiv:2209.15534 [hep-lat] .
  52. V. V. Braguta, M. N. Chernodub, and A. A. Roenko, New mixed inhomogeneous phase in vortical gluon plasma: first-principle results from rotating SU(3) lattice gauge theory,   (2023e), arXiv:2312.13994 [hep-lat] .
  53. A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81, 647 (2009).
  54. S. P. Klevansky, The Nambu-Jona-Lasinio model of quantum chromodynamics, Rev. Mod. Phys. 64, 649 (1992).
  55. M. Wei and M. Huang, Spin alignment of vector mesons from quark dynamics in a rotating medium*, Chin. Phys. C 47, 104105 (2023), arXiv:2303.01897 [hep-ph] .
  56. Y. Jiang, Chiral vortical catalysis, Eur. Phys. J. C 82, 949 (2022), arXiv:2108.09622 [hep-ph] .
Citations (7)

Summary

We haven't generated a summary for this paper yet.