Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameterized and approximation algorithms for coverings points with segments in the plane (2402.16466v1)

Published 26 Feb 2024 in cs.CG and cs.DS

Abstract: We study parameterized and approximation algorithms for a variant of Set Cover, where the universe of elements to be covered consists of points in the plane and the sets with which the points should be covered are segments. We call this problem Segment Set Cover. We also consider a relaxation of the problem called $\delta$-extension, where we need to cover the points by segments that are extended by a tiny fraction, but we compare the solution's quality to the optimum without extension. For the unparameterized variant, we prove that Segment Set Cover does not admit a PTAS unless $\mathsf{P}=\mathsf{NP}$, even if we restrict segments to be axis-parallel and allow $\frac{1}{2}$-extension. On the other hand, we show that parameterization helps for the tractability of Segment Set Cover: we give an FPT algorithm for unweighted Segment Set Cover parameterized by the solution size $k$, a parameterized approximation scheme for Weighted Segment Set Cover with $k$ being the parameter, and an FPT algorithm for Weighted Segment Set Cover with $\delta$-extension parameterized by $k$ and $\delta$. In the last two results, relaxing the problem is probably necessary: we prove that Weighted Segment Set Cover without any relaxation is $\mathsf{W}[1]$-hard and, assuming ETH, there does not exist an algorithm running in time $f(k)\cdot n{o(k / \log k)}$. This holds even if one restricts attention to axis-parallel segments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. How to tame rectangles: Solving Independent Set and Coloring of rectangles via shrinking. In 18th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2015, volume 40 of LIPIcs, pages 43–60. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.43.
  2. Approximation schemes for independent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019. doi:10.1145/3326122.
  3. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998. doi:10.1145/278298.278306.
  4. Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom., 47(2):112–124, 2014. doi:10.1016/j.comgeo.2012.04.001.
  5. Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
  6. Analytical approach to parallel repetition. In 46th ACM Symposium on Theory of Computing, STOC 2014, pages 624–633. ACM, 2014. doi:10.1145/2591796.2591884.
  7. Thomas Erlebach and Erik Jan van Leeuwen. PTAS for Weighted Set Cover on unit squares. In 13th International Workshop on Approximation and Combinatorial Optimization, APPROX 2010, volume 6302 of Lecture Notes in Computer Science, pages 166–177. Springer, 2010. doi:10.1007/978-3-642-15369-3_13.
  8. Weighted geometric set cover problems revisited. J. Comput. Geom., 3(1):65–85, 2012. doi:10.20382/jocg.v3i1a4.
  9. Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001. doi:10.1145/502090.502098.
  10. Fixed parameter tractability of independent set in segment intersection graphs. In Second International Workshop on Parameterized and Exact Computation, IWPEC 2006, volume 4169 of Lecture Notes in Computer Science, pages 166–174. Springer, 2006. doi:10.1007/11847250_15.
  11. Point Line Cover: The easy kernel is essentially tight. ACM Trans. Algorithms, 12(3):40:1–40:16, 2016. doi:10.1145/2832912.
  12. Covering things with things. Discret. Comput. Geom., 33(4):717–729, 2005. doi:10.1007/s00454-004-1108-4.
  13. Dániel Marx. Efficient approximation schemes for geometric problems? In 13th European Symposium on Algorithms, ESA 2005, pages 448–459. Springer, 2005.
  14. Dániel Marx. Parameterized complexity of independence and domination on geometric graphs. In 2nd International Workshop on Parameterized and Exact Computation, IWPEC 2006, volume 4169 of Lecture Notes in Computer Science, pages 154–165. Springer, 2006. doi:10.1007/11847250_14.
  15. Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/toc.2010.v006a005.
  16. Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. ACM Trans. Algorithms, 18(2):13:1–13:64, 2022. doi:10.1145/3483425.
  17. Settling the apx-hardness status for geometric set cover. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 541–550. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.64.
  18. Improved results on geometric hitting set problems. Discret. Comput. Geom., 44(4):883–895, 2010. doi:10.1007/s00454-010-9285-9.
  19. Approximation and parameterized algorithms for geometric independent set with shrinking. In 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, volume 83 of LIPIcs, pages 42:1–42:13. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.MFCS.2017.42.
  20. Quasi-polynomial time approximation schemes for packing and covering problems in planar graphs. Algorithmica, 82(6):1703–1739, 2020. doi:10.1007/s00453-019-00670-w.
  21. Andreas Wiese. Independent Set of convex polygons: From nϵsuperscript𝑛italic-ϵn^{\epsilon}italic_n start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT to 1+ϵ1italic-ϵ1+\epsilon1 + italic_ϵ via shrinking. Algorithmica, 80(3):918–934, 2018. doi:10.1007/s00453-017-0347-8.

Summary

We haven't generated a summary for this paper yet.