Analyzing Downlink Coverage in Clustered Low Earth Orbit Satellite Constellations: A Stochastic Geometry Approach (2402.16307v3)
Abstract: Satellite networks are emerging as vital solutions for global connectivity beyond 5G. As companies such as SpaceX, OneWeb, and Amazon are poised to launch a large number of satellites in low Earth orbit, the heightened inter-satellite interference caused by mega-constellations has become a significant concern. To address this challenge, recent works have introduced the concept of satellite cluster networks where multiple satellites in a cluster collaborate to enhance the network performance. In order to investigate the performance of these networks, we propose mathematical analyses by modeling the locations of satellites and users using Poisson point processes, building on the success of stochastic geometry-based analyses for satellite networks. In particular, we suggest the lower and upper bounds of the coverage probability as functions of the system parameters, including satellite density, satellite altitude, satellite cluster area, path loss exponent, and Nakagami parameter $m$. We validate the analytical expressions by comparing them with simulation results. Our analyses can be used to design reliable satellite cluster networks by effectively estimating the impact of system parameters on the coverage performance.
- ITU, “Measuring the Information Society Report 2018,” vol. 2, pp. 3–4, Dec. 2018.
- X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive Access for 5G and Beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, Mar. 2021.
- S. Liu, Z. Gao, Y. Wu, D. W. Kwan Ng, X. Gao, K.-K. Wong, S. Chatzinotas, and B. Ottersten, “LEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains?” IEEE Commun. Mag., vol. 59, no. 7, pp. 30–36, Jul. 2021.
- N. U. Hassan, C. Huang, C. Yuen, A. Ahmad, and Y. Zhang, “Dense Small Satellite Networks for Modern Terrestrial Communication Systems: Benefits, Infrastructure, and Technologies,” IEEE Wireless Commun., vol. 27, no. 5, pp. 96–103, Oct. 2020.
- R. Wang, M. A. Kishk, and M.-S. Alouini, “Ultra-Dense LEO Satellite-Based Communication Systems: A Novel Modeling Technique,” IEEE Commun. Mag., vol. 60, no. 4, pp. 25–31, Apr. 2022.
- I. del Portillo, B. G. Cameron, and E. F. Crawley, “A Technical Comparison of Three Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband,” Acta Astronautica, vol. 159, pp. 123–135, Jun. 2019.
- J. Yang, D. Li, X. Jiang, S. Chen, and L. Hanzo, “Enhancing the Resilience of Low Earth Orbit Remote Sensing Satellite Networks,” IEEE Netw., vol. 34, no. 4, pp. 304–311, Jul. 2020.
- D.-H. Jung, G. Im, J.-G. Ryu, S. Park, H. Yu, and J. Choi, “Satellite Clustering for Non-Terrestrial Networks: Concept, Architectures, and Applications,” IEEE Veh. Technol. Mag., vol. 18, no. 3, pp. 29–37, Sept. 2023.
- B. Al Homssi, A. Al-Hourani, K. Wang, P. Conder, S. Kandeepan, J. Choi, B. Allen, and B. Moores, “Next Generation Mega Satellite Networks for Access Equality: Opportunities, Challenges, and Performance,” IEEE Commun. Mag., vol. 60, no. 4, pp. 18–24, Apr. 2022.
- M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic Geometry and Random Graphs for the Analysis and Design of Wireless Networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, Sept. 2009.
- J. G. Andrews, F. Baccelli, and R. K. Ganti, “A Tractable Approach to Coverage and Rate in Cellular Networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, Nov. 2011.
- H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 550–560, Apr. 2012.
- T. D. Novlan, H. S. Dhillon, and J. G. Andrews, “Analytical Modeling of Uplink Cellular Networks,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2669–2679, Jun. 2013.
- R. Tanbourgi, S. Singh, J. G. Andrews, and F. K. Jondral, “A Tractable Model for Noncoherent Joint-Transmission Base Station Cooperation,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp. 4959–4973, Sept. 2014.
- M. Afshang and H. S. Dhillon, “Fundamentals of Modeling Finite Wireless Networks Using Binomial Point Process,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3355–3370, May 2017.
- N. Okati, T. Riihonen, D. Korpi, I. Angervuori, and R. Wichman, “Downlink Coverage and Rate Analysis of Low Earth Orbit Satellite Constellations Using Stochastic Geometry,” IEEE Trans. Commun., vol. 68, no. 8, pp. 5120–5134, Aug. 2020.
- D.-H. Jung, J.-G. Ryu, W.-J. Byun, and J. Choi, “Performance Analysis of Satellite Communication System Under the Shadowed-Rician Fading: A Stochastic Geometry Approach,” IEEE Trans. Commun., vol. 70, no. 4, pp. 2707–2721, Apr. 2022.
- A. Talgat, M. A. Kishk, and M.-S. Alouini, “Stochastic Geometry-Based Analysis of LEO Satellite Communication Systems,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2458–2462, Aug. 2021.
- J. Park, J. Choi, and N. Lee, “A Tractable Approach to Coverage Analysis in Downlink Satellite Networks,” IEEE Trans. Wireless Commun., vol. 22, no. 2, pp. 793–807, Feb. 2023.
- A. Al-Hourani, “An Analytic Approach for Modeling the Coverage Performance of Dense Satellite Networks,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 897–901, Apr. 2021.
- ——, “Optimal Satellite Constellation Altitude for Maximal Coverage,” IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1444–1448, Jul. 2021.
- N. Okati and T. Riihonen, “Nonhomogeneous Stochastic Geometry Analysis of Massive LEO Communication Constellations,” IEEE Trans. Commun., vol. 70, no. 3, pp. 1848–1860, Mar. 2022.
- J. Lee, S. Noh, S. Jeong, and N. Lee, “Coverage Analysis of LEO Satellite Downlink Networks: Orbit Geometry Dependent Approach,” arXiv:2206.09382v1, Jun. 2022.
- C.-S. Choi and F. Baccelli, “A Novel Analytical Model for LEO Satellite Constellations Leveraging Cox Point Processes,” arXiv:2212.03549v3, Dec. 2023.
- J. Tang, D. Bian, G. Li, J. Hu, and J. Cheng, “Resource Allocation for LEO Beam-Hopping Satellites in a Spectrum Sharing Scenario,” IEEE Access, vol. 9, pp. 56 468–56 478, 2021.
- A. Koretz and B. Rafaely, “Dolph–Chebyshev Beampattern Design for Spherical Arrays,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2417–2420, Jun. 2009.
- T. Bai and R. W. Heath, “Coverage and Rate Analysis for Millimeter-Wave Cellular Networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1100–1114, Feb. 2015.
- S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Tractable Model for Rate in Self-Backhauled Millimeter Wave Cellular Networks,” IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2196–2211, Oct. 2015.
- M. Di Renzo, “Stochastic Geometry Modeling and Analysis of Multi-Tier Millimeter Wave Cellular Networks,” IEEE Trans. Wireless Commun., vol. 14, no. 9, pp. 5038–5057, Sept. 2015.
- R. W. Heath, M. Kountouris, and T. Bai, “Modeling Heterogeneous Network Interference Using Poisson Point Processes,” IEEE Trans. Signal Process., vol. 61, no. 16, pp. 4114–4126, Aug. 2013.
- E. T. Bell, “Exponential Polynomials,” Ann. Math, vol. 35, pp. 258–277, 1934.
- G. Karagiannidis, N. Sagias, and T. Tsiftsis, “Closed-Form Statistics for The Sum of Squared Nakagami-m Variates and Its Applications,” IEEE Trans. Commun., vol. 54, no. 8, pp. 1353–1359, Aug. 2006.