Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Generative Artificial Intelligence Means for Terminological Definitions (2402.16139v3)

Published 25 Feb 2024 in cs.CL and cs.AI

Abstract: This paper examines the impact of Generative Artificial Intelligence (GenAI) tools like ChatGPT on the creation and consumption of terminological definitions. From the terminologist's point of view, the strategic use of GenAI tools can streamline the process of crafting definitions, reducing both time and effort, while potentially enhancing quality. GenAI tools enable AI-assisted terminography, notably post-editing terminography, where the machine produces a definition that the terminologist then corrects or refines. However, the potential of GenAI tools to fulfill all the terminological needs of a user, including term definitions, challenges the very existence of terminological definitions and resources as we know them. Unlike terminological definitions, GenAI tools can describe the knowledge activated by a term in a specific context. However, a main drawback of these tools is that their output can contain errors. For this reason, users requiring reliability will likely still resort to terminological resources for definitions. Nevertheless, with the inevitable integration of AI into terminology work, the distinction between human-created and AI-created content will become increasingly blurred.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. A. San Martín, A Flexible Approach to Terminological Definitions: Representing Thematic Variation, International Journal of Lexicography 35 (2022) 53–74. doi:10.1093/ijl/ecab013.
  2. J. Allwood, Meaning potentials and context: Some consequences for the analysis of variation in meaning, in: H. Cuyckens, R. Dirven, J. Taylor (Eds.), Cognitive Approaches to Lexical Semantics, Mouton de Gruyter, 2003, pp. 29–66. doi:10.1515/9783110219074.29.
  3. A. San Martín, Contextual Constraints in Terminological Definitions, Frontiers in Communication 7 (2022). doi:10.3389/fcomm.2022.885283.
  4. G.-M. de Schryver, Generative AI and Lexicography: The Current State of the Art Using ChatGPT, International Journal of Lexicography (2023). doi:10.1093/ijl/ecad021.
  5. A. Borji, Q. Ai, A Categorical Archive of ChatGPT Failures, ArXiv preprint (2023). arXiv:2302.03494.
  6. M. Jakubíček, M. Rundell, The end of lexicography? Can ChatGPT outperform current tools for post-editing lexicography?, in: Proceedings of the eLex 2023 conference, Lexical Computing CZ s.r.o., 2023, pp. 518–33. URL: https://elex.link/elex2023/proceedings-download.
  7. Making AI Less "thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models, ArXiv preprint (2023). arXiv:2304.03271.
  8. N. Lucchi, ChatGPT: A Case Study on Copyright Challenges for Generative Artificial Intelligence Systems, European Journal of Risk Regulation (2023) 1–23. doi:10.1017/err.2023.59.
  9. Practical Post-Editing Lexicography with Lexonomy and Sketch Engine, in: Proceedings of the XVIII EURALEX International Congress, 2018, pp. 65–67.
  10. Do Language Models Plagiarize?, in: Proceedings of the ACM Web Conference 2023, ACM, 2023, pp. 3637–3647. doi:10.1145/3543507.3583199.
  11. E. Mckean, W. Fitzgerald, The ROI of AI in Lexicography, in: Asialex 2023 Proceedings, 2023, pp. 18–27. URL: https://www.asialex.org/pdf/Asialex-Proceedings-2023.pdf.
  12. R. Lew, ChatGPT as a COBUILD lexicographer, Humanities and Social Sciences Communications 10 (2023) 704. doi:10.1057/s41599-023-02119-6.
  13. Utilización de técnicas de corpus en la representación del conocimiento médico, Terminology 7 (2001) 167–197. doi:10.1075/term.7.2.04fab.
  14. P. Faber, Terminographic definition and concept representation, in: B. Maia, J. Haller, M. Ulyrich (Eds.), Training the Language Services Provider for the New Millennium, Universidade do Porto, 2002, pp. 343–354.
  15. The Sketch Engine, in: G. Williams, S. Vessier (Eds.), Proceedings of the Eleventh EURALEX International Congress, EURALEX, 2004, pp. 105–116.
  16. P. León-Araúz, A. San Martín, The EcoLexicon Semantic Sketch Grammar: from Knowledge Patterns to Word Sketches, in: I. Kerneman, S. Krek (Eds.), Proceedings of the LREC 2018 Workshop “Globalex 2018 – Lexicography & WordNets”, Globalex, 2018, pp. 94–99. URL: http://lrec-conf.org/workshops/lrec2018/W33/pdf/15_W33.pdf.
  17. Repérage automatisé de l’hyponymie dans des corpus spécialisés en français à l’aide de Sketch Engine, Terminology 28 (2022) 264–298. doi:10.1075/term.20044.san.
  18. M. Rundell, Automating the creation of dictionaries: are we nearly there?, in: Asialex 2023 Proceedings, 2023, pp. 9–17. URL: https://www.asialex.org/pdf/Asialex-Proceedings-2023.pdf.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Antonio San Martín (3 papers)

Summary

We haven't generated a summary for this paper yet.