Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analogue simulations of quantum gravity with fluids (2402.16136v1)

Published 25 Feb 2024 in gr-qc, cond-mat.quant-gas, hep-th, physics.flu-dyn, and quant-ph

Abstract: The recent technological advances in controlling and manipulating fluids have enabled the experimental realization of acoustic analogues of gravitational black holes. A flowing fluid provides an effective curved spacetime on which sound waves can propagate, allowing the simulation of gravitational geometries and related phenomena. The last decade has witnessed a variety of hydrodynamic experiments testing disparate aspects of black hole physics culminating in the recent experimental evidence of Hawking radiation and Penrose superradiance. In this Perspective, we discuss the potential use of analogue hydrodynamic systems beyond classical general relativity towards the exploration of quantum gravitational effects. These include possible insights into the information-loss paradox, black hole physics with Planck-scale quantum corrections, emergent gravity scenarios and the regularization of curvature singularities. We aim at bridging the gap between the non-overlapping communities of experimentalists working with classical and quantum fluids and quantum-gravity theorists, illustrating the opportunities made possible by the latest experimental and theoretical developments in these important areas of research

Definition Search Book Streamline Icon: https://streamlinehq.com
References (93)
  1. S. W. Hawking, Black hole explosions?, Nature 248, 30 (1974).
  2. S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)].
  3. R. Penrose and R. M. Floyd, Extraction of rotational energy from a black hole, Nature 229, 177 (1971).
  4. C. Misner, Stability of Kerr black holes against scalar perturbations, Bull. Amer. Phys. Soc. 17, 472 (1972).
  5. Y. B. Zel’dovich, Generation of waves by a rotating body, Soviet Journal of Experimental and Theoretical Physics Letters 14, 180 (1971).
  6. A. A. Starobinskiǐ, Amplification of waves during reflection from a rotating “black hole”, Soviet Journal of Experimental and Theoretical Physics 37, 28 (1973).
  7. A. A. Starobinskiǐ and S. M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”, Soviet Journal of Experimental and Theoretical Physics 38, 1 (1974).
  8. W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14, 870 (1976).
  9. W. G. Unruh, Experimental black-hole evaporation?, Phys. Rev. Lett. 46, 1351 (1981).
  10. C. Barceló, S. Liberati, and M. Visser, Analogue gravity, Living reviews in relativity https://doi.org/10.12942/lrr-2011-3.
  11. C. Barceló, Analogue black-hole horizons, Nature Phys. 15, 210 (2019).
  12. R. W. White, Acoustic ray tracing in moving inhomogeneous fluids, The Journal of the Acoustical Society of America 53, 1700 (1973), https://doi.org/10.1121/1.1913522 .
  13. M. Visser, Hawking radiation without black hole entropy, Phys. Rev. Lett. 80, 3436 (1998a).
  14. M. Visser, Acoustic black holes: horizons, ergospheres and Hawking radiation, Classical and Quantum Gravity 15, 1767 (1998b).
  15. C. R. Almeida and M. J. Jacquet, Analogue gravity and the Hawking effect: historical perspective and literature review (2022), arXiv:2212.08838 [physics.hist-ph] .
  16. M. Elazar, V. Fleurov, and S. Bar-Ad, All-optical event horizon in an optical analog of a laval nozzle, Phys. Rev. A 86, 063821 (2012).
  17. L.-P. Euvé and G. Rousseaux, Non-linear processes and stimulated Hawking radiation in hydrodynamics for decelerating subcritical free surface flows with a subluminal dispersion relation (2021), arXiv:2112.12504 [gr-qc] .
  18. J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nature Physics 12, 959 (2016).
  19. S. Patrick, Rotational superradiance with Bogoliubov dispersion, Classical and Quantum Gravity 38, 10.1088/1361-6382/abf1fc.
  20. S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14, 2460 (1976).
  21. S. Raju, Lessons from the information paradox, Physics Reports 943, 1 (2022).
  22. T. Vachaspati, D. Stojkovic, and L. M. Krauss, Observation of incipient black holes and the information loss problem, Phys. Rev. D 76, 024005 (2007).
  23. S.-S. Baak, C. C. H. Ribeiro, and U. R. Fischer, Number-conserving solution for dynamical quantum backreaction in a Bose-Einstein condensate, Phys. Rev. A 106, 053319 (2022).
  24. S. Liberati, G. Tricella, and A. Trombettoni, The information loss problem: An analogue gravity perspective, Entropy 21, 940 (2019).
  25. A. Perez, No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox, Classical and Quantum Gravity 32, 084001 (2015).
  26. X. Calmet and S. D. Hsu, Quantum hair and black hole information, Physics Letters B 827, 136995 (2022).
  27. P. Cheng and Y. An, Soft black hole information paradox: Page curve from Maxwell soft hair of a black hole, Phys. Rev. D 103, 126020 (2021).
  28. L. M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62, 1221 (1989).
  29. J. Preskill and L. M. Krauss, Local discrete symmetry and quantum-mechanical hair, Nuclear Physics B 341, 50 (1990).
  30. C. A. R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112, 221101 (2014).
  31. W. H. Press and S. A. Teukolsky, Floating Orbits, Superradiant scattering and the black-hole bomb, Nature 238, 211 (1972).
  32. S. Hod, Stationary scalar clouds around rotating black holes, Phys. Rev. D 86, 104026 (2012).
  33.  73, 2378 (2013).
  34. F. Girelli, S. Liberati, and L. Sindoni, Gravitational dynamics in Bose-Einstein condensates, Phys. Rev. D 78, 084013 (2008).
  35. F. Marino, Massive phonons and gravitational dynamics in a photon-fluid model, Phys. Rev. A 100, 063825 (2019).
  36. U. R. Fischer and R. Schützhold, Quantum simulation of cosmic inflation in two-component bose-einstein condensates, Phys. Rev. A 70, 063615 (2004).
  37. M. Visser and S. Weinfurtner, Massive Klein-Gordon equation from a Bose-Einstein-condensation-based analogue spacetime, Phys. Rev. D 72, 044020 (2005).
  38. M. Ciszak and F. Marino, Acoustic black-hole bombs and scalar clouds in a photon-fluid model, Phys. Rev. D 103, 045004 (2021).
  39. S. Hod, Stationary scalar clouds supported by rapidly-rotating acoustic black holes in a photon-fluid model, Phys. Rev. D 103, 084003 (2021a).
  40. S. Hod, No-short scalar hair theorem for spinning acoustic black holes in a photon-fluid model, Phys. Rev. D 104, 104041 (2021b).
  41. P. Chen, Y. Ong, and D. h. Yeom, Black hole remnants and the information loss paradox, Physics Reports 603, 1 (2015).
  42. L. J. Garay, Spacetime foam as a quantum thermal bath, Phys. Rev. Lett. 80, 2508 (1998).
  43. G. Amelino-Camelia, Special treatment, Nature 418, 34 (2002).
  44. J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67, 044017 (2003).
  45. S. Liberati, Tests of Lorentz invariance: a 2013 update, Classical and Quantum Gravity 30, 133001 (2013).
  46. G. Amelino-Camelia, M. Arzano, and A. Procaccini, Severe constraints on the loop-quantum-gravity energy-momentum dispersion relation from the black-hole area-entropy law, Phys. Rev. D 70, 107501 (2004).
  47. Y. Ling, B. Hu, and X. Li, Modified dispersion relations and black hole physics, Phys. Rev. D 73, 087702 (2006).
  48. K. Nozari and A. Sefidgar, Comparison of approaches to quantum correction of black hole thermodynamics, Physics Letters B 635, 156 (2006).
  49. C. Rovelli and S. Speziale, Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction, Phys. Rev. D 67, 064019 (2003).
  50. M. Fontanini, E. Spallucci, and T. Padmanabhan, Zero-point length from string fluctuations, Physics Letters B 633, 627 (2006).
  51. B. L. Hu, Can spacetime be a condensate?, International Journal of Theoretical Physics 44, 1785 (2005).
  52. T. Konopka, F. Markopoulou, and S. Severini, Quantum graphity: A model of emergent locality, Phys. Rev. D 77, 104029 (2008).
  53. T. Jacobson, Thermodynamics of spacetime: The Einstein equation of state, Phys. Rev. Lett. 75, 1260 (1995).
  54. A. D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968).
  55. M. Visser, Sakharov’s induced gravity: a modern perspective, Modern Physics Letters A 17, 977 (2002).
  56. E. Verlinde, On the origin of gravity and the laws of Newton, Journal of High Energy Physics 2011, 4 (2011).
  57. D. Oriti, The group field theory approach to quantum gravity: some recent results (2009), arXiv:0912.2441 [hep-th] .
  58. J. Maldacena, International Journal of Theoretical Physics 38, 1113 (1999).
  59. S. Pasterski, M. Pate, and A.-M. Raclariu, Celestial holography (2021), arXiv:2111.11392 [hep-th] .
  60. L. Freidel, M. Geiller, and D. Pranzetti, Edge modes of gravity. part I: Corner potentials and charges, JHEP 11, 026.
  61. D. L. Jafferis and E. Schneider, Stringy ER = EPR, Journal of High Energy Physics 2022, 10.1007/jhep10(2022)195 (2022).
  62. M. Van Raamsdonk, Spacetime from bits, Science 370, 198 (2020).
  63. G. Rousseaux, The basics of water waves theory for analogue gravity, in Lecture Notes in Physics (Springer International Publishing, 2013) pp. 81–107.
  64. N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23 (1947).
  65. S.-Y. Chä and U. R. Fischer, Probing the scale invariance of the inflationary power spectrum in expanding quasi-two-dimensional dipolar condensates, Phys. Rev. Lett. 118, 130404 (2017).
  66. G. E. Volovik, Hydraulic jump as a white hole, Journal of Experimental and Theoretical Physics Letters 82, 624 (2005).
  67. S. Liberati, M. Visser, and S. Weinfurtner, Naturalness in an emergent analogue spacetime, Phys. Rev. Lett. 96, 151301 (2006).
  68. W. G. Unruh, Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D 51, 2827 (1995).
  69. T. Jacobson, Black-hole evaporation and ultrashort distances, Phys. Rev. D 44, 1731 (1991).
  70. S. Corley and T. Jacobson, Hawking spectrum and high frequency dispersion, Phys. Rev. D 54, 1568 (1996).
  71. T. Jacobson, Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D 48, 728 (1993).
  72. L.-P. Euvé and G. Rousseaux, Classical analogue of an interstellar travel through a hydrodynamic wormhole, Phys. Rev. D 96, 064042 (2017).
  73. W. G. Unruh and R. Schützhold, Universality of the Hawking effect, Phys. Rev. D 71, 024028 (2005).
  74. C. C. H. Ribeiro and U. R. Fischer, Impact of trans-Planckian excitations on black-hole radiation in dipolar condensates (2022), arXiv:2211.01243 [gr-qc] .
  75. M. Novello and E. Goulart, Beyond analog gravity: the case of exceptional dynamics, Classical and Quantum Gravity 28, 145022 (2011).
  76. C. Cherubini and S. Filippi, Von Mises’ potential flow wave equation and nonlinear analog gravity, Phys. Rev. D 84, 124010 (2011).
  77. S. Datta and U. R. Fischer, Analogue gravitational field from nonlinear fluid dynamics, Classical and Quantum Gravity 39, 075018 (2022).
  78. S. Finazzi, S. Liberati, and L. Sindoni, Cosmological constant: A lesson from Bose-Einstein condensates, Phys. Rev. Lett. 108, 071101 (2012).
  79. A. Belenchia, S. Liberati, and A. Mohd, Emergent gravitational dynamics in a relativistic Bose-Einstein condensate, Phys. Rev. D 90, 104015 (2014).
  80. N. Deruelle, Nordstrom’s scalar theory of gravity and the equivalence principle, Gen. Rel. Grav. 43, 3337 (2011), arXiv:1104.4608 [gr-qc] .
  81. R. A. Mosna, J. a. P. M. Pitelli, and M. Richartz, Analogue model for anti-de Sitter as a description of point sources in fluids, Phys. Rev. D 94, 104065 (2016).
  82. D. Q. Aruquipa, R. A. Mosna, and J. a. P. M. Pitelli, Analogue gravity and radial fluid flows: The case of ads and its deformations, Phys. Rev. D 97, 104056 (2018).
  83. S. Hossenfelder, Analog systems for gravity duals, Phys. Rev. D 91, 124064 (2015).
  84. S. Hossenfelder, A relativistic acoustic metric for planar black holes, Physics Letters B 752, 13 (2016).
  85. R. Dey, S. Liberati, and R. Turcati, Ads and ds black hole solutions in analogue gravity: The relativistic and nonrelativistic cases, Phys. Rev. D 94, 104068 (2016).
  86. S. Waeber and L. G. Yaffe, Colliding localized, lumpy holographic shocks with a granular nuclear structure, Journal of High Energy Physics 2023, 1.
  87. R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14, 57 (1965).
  88. S. W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. Lond. A 314, 529 (1970).
  89. L. D. Landau and E. M. Lifshitz, Fluid Mechanics: Course of Theoretical Physics, Volume 6, Vol. 6 (Elsevier, 2013).
  90. B. Riemann, Ueber die fortpflanzung ebener luftwellen von endlicher schwingungsweite, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 8, 43 (1860).
  91. D. Bohm, A suggested interpretation of the quantum theory in terms of ”hidden” variables. i, Phys. Rev. 85, 166 (1952).
  92. U. R. Fischer and S. Datta, Dispersive censor of acoustic spacetimes with a shock-wave singularity, Phys. Rev. D 107, 084023 (2023).
  93. W. Wan, S. Jia, and J. W. Fleischer, Dispersive superfluid-like shock waves in nonlinear optics, Nature Physics 3, 46 (2006).
Citations (20)

Summary

  • The paper demonstrates that fluid dynamics can simulate quantum gravity by replicating phenomena such as acoustic horizons and Hawking radiation.
  • It outlines experimental techniques that use sound waves in fluids to mimic curved spacetime and validate theoretical gravity models.
  • Findings suggest that controlled fluid analogues offer valuable insights into backreaction effects and the emergence of gravitational dynamics.

Analogue Simulations of Quantum Gravity with Fluids

The paper "Analogue simulations of quantum gravity with fluids" explores the intriguing intersection of fluid dynamics and theoretical physics, particularly in the context of simulating quantum gravity phenomena. The authors propose that the recent technological advancements in controlling fluid systems offer a novel experimental platform to paper gravitational analogues, a concept traditionally dominated by complex and often empirically inaccessible models within astrophysics and cosmology.

Background and Motivation

Traditional explorations of quantum gravity phenomena, such as Hawking radiation from black holes, have largely relied on observational astrophysics and theoretical constructs which are not easily subjected to direct experimentation. Fluid-based analogue gravity systems provide a scalable and controlled environment to investigate these quantum mechanical effects in laboratory settings. These systems exploit the dynamics of sound waves in flowing fluids, which can mimic various aspects of gravitational geometries seen in cosmic structures like black holes.

Key Concepts and Experimental Evidence

The paper reviews several key concepts:

  • Acoustic Horizons: Just as light cones delineate causal structures in spacetime around massive bodies, sound waves in an inhomogeneous fluid can simulate curved spacetime geometries. An acoustic event horizon forms in regions where the flow velocity exceeds the local speed of sound, preventing sound waves from escaping, akin to a black hole's event horizon.
  • Phenomena Observed: The paper discusses how certain emergent phenomena, such as Hawking radiation, which were traditionally theoretical, have been experimentally observed in fluid systems. Key experiments have confirmed Hawking-like radiation and Penrose superradiance in analogue systems, underscoring the robustness of these phenomena across different physical implementations.

Quantum Gravity Implications

The authors delve into the potential implications of these hydrodynamic simulations for understanding quantum gravitational effects:

  • Backreaction and Information Paradox: Discussing the possibility of gaining insights into the information paradox, the paper highlights how analogue systems can simulate backreaction effects, where fluctuations affect the background geometry, leading to unitary evolution despite apparent classical inconsistencies.
  • Emergent Geometries: The complex behavior within fluids suggests a scenario where spacetime curvature and gravity emerge from underlying microscopic quantum dynamics. This mirrors many emergent gravity theories, challenging the notion of spacetime as a fundamental structure.

Future Directions

The work points towards future research directions that could exploit these analogue systems to tackle outstanding questions in quantum gravity:

  • Modified Dispersion Relations: Analogue systems inherently possess modified dispersion relations with natural length scales breaking Lorentz symmetry, offering insights into potential high-energy modifications in gravitational theories.
  • Emergent Gravity and Holography: These systems allow experimental investigations into concepts such as the holographic principle, where gravitational dynamics in a bulk spacetime can be related to quantum field theories on a boundary.

Conclusions

The use of fluid systems as analogue models offers a compelling framework for exploring foundational issues in gravity and quantum mechanics. As experimental capabilities continue to evolve, these systems could unlock new pathways for validating theories that remain beyond the reach of direct celestial observations. Further research could elucidate the extent to which analogue gravity can inform us about the nature of quantum gravity, including potential insights into spacetime's emergence from more primal quantum informational units. As such, this interdisciplinary approach not only bridges theoretical and experimental physics but also promises to deepen our understanding of quantum gravity's underlying principles.