Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalised Soft Finite Element Method for Elliptic Eigenvalue Problems (2402.16080v1)

Published 25 Feb 2024 in math.NA and cs.NA

Abstract: The recently proposed soft finite element method (SoftFEM) reduces the stiffness (condition numbers), consequently improving the overall approximation accuracy. The method subtracts a least-square term that penalizes the gradient jumps across mesh interfaces from the FEM stiffness bilinear form while maintaining the system's coercivity. Herein, we present two generalizations for SoftFEM that aim to improve the approximation accuracy and further reduce the discrete systems' stiffness. Firstly and most naturally, we generalize SoftFEM by adding a least-square term to the mass bilinear form. Superconvergent results of rates $h6$ and $h8$ for eigenvalues are established for linear uniform elements; $h8$ is the highest order of convergence known in the literature. Secondly, we generalize SoftFEM by applying the blended Gaussian-type quadratures. We demonstrate further reductions in stiffness compared to traditional FEM and SoftFEM. The coercivity and analysis of the optimal error convergences follow the work of SoftFEM. Thus, this paper focuses on the numerical study of these generalizations. For linear and uniform elements, analytical eigenpairs, exact eigenvalue errors, and superconvergent error analysis are established. Various numerical examples demonstrate the potential of generalized SoftFEMs for spectral approximation, particularly in high-frequency regimes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM Journal on Numerical Analysis, 48(1):346–371, 2010.
  2. Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Engrg., 195(25-28):3483–3503, 2006.
  3. I. Babuška and J. Osborn. Eigenvalue problems. In Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, pages 641–787. North-Holland, Amsterdam, 1991.
  4. Daniele Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120, 2010.
  5. Rate of convergence estimates for nonselfadjoint eigenvalue approximations. Math. Comp., 27:525–549, 1973.
  6. H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
  7. Spectral approximation of elliptic operators by the hybrid high-order method. Math. Comp., 88(318):1559–1586, 2019.
  8. Quadrature blending for Isogeometric analysis. Procedia Computer Science, 108:798–807, 2017. International Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland.
  9. Dispersion optimized quadratures for isogeometric analysis. J. Comput. Appl. Math., 355:283–300, 2019.
  10. C. Canuto. Eigenvalue approximations by mixed methods. RAIRO Anal. Numér., 12(1):27–50, iii, 1978.
  11. Guaranteed lower bounds on eigenvalues of elliptic operators with a hybrid high-order method. Numerische Mathematik, 149(2):273–304, 2021.
  12. Hybridization and postprocessing techniques for mixed eigenfunctions. SIAM J. Numer. Anal., 48(3):857–881, 2010.
  13. Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Engrg., 195(41-43):5257–5296, 2006.
  14. Methods of numerical integration. Courier Corporation, 2007.
  15. Quanling Deng. Analytical solutions to some generalized and polynomial eigenvalue problems. Special Matrices, 9(1):240–256, 2021.
  16. SoftIGA: Soft isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 403:115705, 2023.
  17. Dispersion-minimized mass for isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 341:71–92, 2018.
  18. A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes. Computer Methods in Applied Mechanics and Engineering, 383:113907, 2021.
  19. SoftFEM: Revisiting the spectral finite element approximation of second-order elliptic operators. Computers & Mathematics with Applications, 101:119–133, 2021.
  20. On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér., 12(2):97–112, iii, 1978.
  21. On spectral approximation. II. Error estimates for the Galerkin method. RAIRO Anal. Numér., 12(2):113–119, iii, 1978.
  22. Finite Elements II: Galerkin approximation, elliptic and mixed PDEs. Springer-Verlag, New York, 2020. In press.
  23. Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal., 38(4):2026–2054, 2018.
  24. Stefano Giani. h⁢pℎ𝑝hpitalic_h italic_p-adaptive composite discontinuous Galerkin methods for elliptic eigenvalue problems on complicated domains. Appl. Math. Comput., 267:604–617, 2015.
  25. Spectral approximations by the HDG method. Math. Comp., 84(293):1037–1059, 2015.
  26. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p𝑝pitalic_p-method finite elements with k𝑘kitalic_k-method NURBS. Comput. Methods Appl. Mech. Engrg., 197(49-50):4104–4124, 2008.
  27. Eigenvalue approximation by mixed and hybrid methods. Math. Comp., 36(154):427–453, 1981.
  28. B. Mercier and J. Rappaz. Eigenvalue approximation via non-conforming and hybrid finite element methods. Publications des séminaires de mathématiques et informatique de Rennes, 1978(S4):1–16, 1978.
  29. John E. Osborn. Spectral approximation for compact operators. Math. Comput., 29:712–725, 1975.
  30. Dispersion-optimized quadrature rules for Isogeometric analysis: Modified inner products, their dispersion properties, and optimally blended schemes. Computer Methods in Applied Mechanics and Engineering, 320:421–443, 2017.
  31. Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes. Computer Methods in Applied Mechanics and Engineering, 320:421–443, 2017.
  32. An analysis of the finite element method. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation.
  33. G. M. Vainikko. Asymptotic error bounds for projection methods in the eigenvalue problem. Ž. Vyčisl. Mat. i Mat. Fiz., 4:405–425, 1964.
  34. G. M. Vainikko. Rapidity of convergence of approximation methods in eigenvalue problems. Ž. Vyčisl. Mat. i Mat. Fiz., 7:977–987, 1967.

Summary

We haven't generated a summary for this paper yet.