Krylov Complexity in $2d$ CFTs with SL$(2,\mathbb{R})$ deformed Hamiltonians (2402.15835v1)
Abstract: In this study, we analyze Krylov Complexity in two-dimensional conformal field theories subjected to deformed SL$(2,\mathbb{R})$ Hamiltonians. In the vacuum state, we find that the K-complexity exhibits a universal phase structure. The phase structure involves the K-complexity exhibiting an oscillatory behaviour in the non-heating phase, which contrasts with the exponential growth observed in the heating phase, while it displays polynomial growth at the phase boundary. Furthermore, we extend our analysis to compute the K-complexity of a light operator in excited states, considering both large-c CFT and free field theory. In the free field theory, we find a state-independent phase structure of K-complexity. However, in the large-c CFT, the behavior varies, with the K-Complexity once again displaying exponential growth in the heating phase and polynomial growth at the phase boundary. Notably, the precise exponent governing this growth depends on the heaviness of the state under examination. In the non-heating phase, we observe a transition in K-complexity behavior from oscillatory to exponential growth, akin to findings in [1], as it represents a special case within the non-heating phase.
- A. Kundu, V. Malvimat and R. Sinha, “State Dependence of Krylov Complexity in 2d2𝑑2d2 italic_d CFTs,” [[arXiv:2303.03426 [hep-th]].
- M. Srednicki, “Chaos and Quantum Thermalization,” doi:10.1103/PhysRevE.50.888 [arXiv:cond-mat/9403051 [cond-mat]].
- C. Gogolin and J. Eisert, “Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems,” Rept. Prog. Phys. 79, no.5, 056001 (2016) doi:10.1088/0034-4885/79/5/056001 [arXiv:1503.07538 [quant-ph]].
- L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Adv. Phys. 65, no.3, 239-362 (2016) doi:10.1080/00018732.2016.1198134 [arXiv:1509.06411 [cond-mat.stat-mech]].
- S. Das, B. Ezhuthachan, A. Kundu, S. Porey and B. Roy, “Critical quenches, OTOCs and early-time chaos,” JHEP 07, 046 (2022) doi:10.1007/JHEP07(2022)046 [arXiv:2108.12884 [hep-th]].
- S. Das, B. Ezhuthachan, A. Kundu, S. Porey, B. Roy and K. Sengupta, “Out-of-Time-Order correlators in driven conformal field theories,” JHEP 08, 221 (2022) doi:10.1007/JHEP08(2022)221 [arXiv:2202.12815 [hep-th]].
- L. Susskind, “Three Lectures on Complexity and Black Holes,” Springer, 2020, ISBN 978-3-030-45108-0, 978-3-030-45109-7 doi:10.1007/978-3-030-45109-7 [arXiv:1810.11563 [hep-th]].
- L. Susskind, “Why do Things Fall?,” [arXiv:1802.01198 [hep-th]].
- D. Stanford and L. Susskind, “Complexity and Shock Wave Geometries,” Phys. Rev. D 90, no.12, 126007 (2014) doi:10.1103/PhysRevD.90.126007 [arXiv:1406.2678 [hep-th]].
- A. Chattopadhyay, A. Mitra and H. J. R. van Zyl, “Spread complexity as classical dilaton solutions,” [arXiv:2302.10489[hep-th]].
- R. Jefferson and R. C. Myers, “Circuit complexity in quantum field theory,” JHEP 10 (2017), 107 doi:10.1007/JHEP10(2017)107 [arXiv:1707.08570 [hep-th]].
- S. Chapman, M. P. Heller, H. Marrochio and F. Pastawski, “Toward a Definition of Complexity for Quantum Field Theory States,” Phys. Rev. Lett. 120 (2018) no.12, 121602 doi:10.1103/PhysRevLett.120.121602 [arXiv:1707.08582 [hep-th]].
- N. Chagnet, S. Chapman, J. de Boer and C. Zukowski, “Complexity for Conformal Field Theories in General Dimensions,” Phys. Rev. Lett. 128 (2022) no.5, 051601 doi:10.1103/PhysRevLett.128.051601 [arXiv:2103.06920 [hep-th]].
- D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, “A Universal Operator Growth Hypothesis,” Phys. Rev. X 9, no.4, 041017 (2019) doi:10.1103/PhysRevX.9.041017 [arXiv:1812.08657 [cond-mat.stat-mech]].
- A. Kar, L. Lamprou, M. Rozali and J. Sully, “Random matrix theory for complexity growth and black hole interiors,” JHEP 01, 016 (2022) doi:10.1007/JHEP01(2022)016 [arXiv:2106.02046 [hep-th]].
- A. Dymarsky and A. Gorsky, “Quantum chaos as delocalization in Krylov space,” Phys. Rev. B 102, no.8, 085137 (2020) doi:10.1103/PhysRevB.102.085137 [arXiv:1912.12227 [cond-mat.stat-mech]].
- A. Avdoshkin and A. Dymarsky, “Euclidean operator growth and quantum chaos,” Phys. Rev. Res. 2, no.4, 043234 (2020) doi:10.1103/PhysRevResearch.2.043234 [arXiv:1911.09672 [cond-mat.stat-mech]].
- J. L. F. Barbón, E. Rabinovici, R. Shir and R. Sinha, “On The Evolution Of Operator Complexity Beyond Scrambling,” JHEP 10, 264 (2019) doi:10.1007/JHEP10(2019)264 [arXiv:1907.05393 [hep-th]].
- A. Dymarsky and M. Smolkin, “Krylov complexity in conformal field theory,” Phys. Rev. D 104, no.8, L081702 (2021) doi:10.1103/PhysRevD.104.L081702 [arXiv:2104.09514 [hep-th]].
- P. Caputa, J. M. Magan and D. Patramanis, “Geometry of Krylov complexity,” Phys. Rev. Res. 4 (2022) no.1, 013041 doi:10.1103/PhysRevResearch.4.013041 [arXiv:2109.03824 [hep-th]].
- P. Caputa and S. Datta, “Operator growth in 2d CFT,” JHEP 12 (2021), 188 [erratum: JHEP 09 (2022), 113] doi:10.1007/JHEP12(2021)188 [arXiv:2110.10519 [hep-th]].
- A. Avdoshkin, A. Dymarsky and M. Smolkin, “Krylov complexity in quantum field theory, and beyond,” [arXiv:2212.14429 [hep-th]].
- H. A. Camargo, V. Jahnke, K. Y. Kim and M. Nishida, “Krylov Complexity in Free and Interacting Scalar Field Theories with Bounded Power Spectrum,” [arXiv:2212.14702 [hep-th]].
- S. Khetrapal, “Chaos and operator growth in 2d CFT,” [arXiv:2210.15860 [hep-th]].
- E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “Krylov complexity from integrability to chaos,” JHEP 07, 151 (2022) doi:10.1007/JHEP07(2022)151 [arXiv:2207.07701 [hep-th]].
- J. Erdmenger, S. K. Jian and Z. Y. Xian, “Universal chaotic dynamics from Krylov space,” JHEP 08 (2023), 176 [arXiv:2303.12151 [hep-th]].
- H. Tang, “Operator Krylov complexity in random matrix theory,” [arXiv:2312.17416 [hep-th]].
- E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “A bulk manifestation of Krylov complexity,” JHEP 08 (2023), 213 doi:10.1007/JHEP08(2023)213 [arXiv:2305.04355 [hep-th]].
- T. Anegawa, N. Iizuka and M. Nishida, “Krylov complexity as an order parameter for deconfinement phase transitions at large N𝑁Nitalic_N,” [arXiv:2401.04383 [hep-th]].
- R. Basu, A. Ganguly, S. Nath and O. Parrikar, “Complexity Growth and the Krylov-Wigner function,” [arXiv:2402.13694 [hep-th]].
- B. Bhattacharjee, X. Cao, P. Nandy and T. Pathak, “Operator growth in open quantum systems: lessons from the dissipative SYK,” JHEP 03 (2023), 054 doi:10.1007/JHEP03(2023)054 [arXiv:2212.06180 [quant-ph]].
- N. Iizuka and M. Nishida, “Krylov complexity in the IP matrix model,” JHEP 11 (2023), 065 doi:10.1007/JHEP11(2023)065 [arXiv:2306.04805 [hep-th]].
- N. Iizuka and M. Nishida, “Krylov complexity in the IP matrix model. Part II,” JHEP 11 (2023), 096 doi:10.1007/JHEP11(2023)096 [arXiv:2308.07567 [hep-th]].
- B. Bhattacharjee, S. Sur and P. Nandy, “Probing quantum scars and weak ergodicity breaking through quantum complexity,” Phys. Rev. B 106 (2022) no.20, 205150 doi:10.1103/PhysRevB.106.205150 [2208.05503 [quant-ph]].
- V. Balasubramanian, P. Caputa, J. M. Magan and Q. Wu, “Quantum chaos and the complexity of spread of states,” Phys. Rev. D 106, no.4, 046007 (2022) doi:10.1103/PhysRevD.106.046007 [arXiv:2202.06957 [hep-th]].
- P. Caputa and S. Liu, “Quantum complexity and topological phases of matter,” Phys. Rev. B 106, no.19, 195125 (2022) doi:10.1103/PhysRevB.106.195125 [arXiv:2205.05688 [hep-th]].
- P. Caputa, N. Gupta, S. S. Haque, S. Liu, J. Murugan and H. J. R. Van Zyl, “Spread Complexity and Topological Transitions in the Kitaev Chain,” [arXiv:2208.06311 [hep-th]].
- M. Afrasiar, J. Kumar Basak, B. Dey, K. Pal and K. Pal, “Time evolution of spread complexity in quenched Lipkin-Meshkov-Glick model,” [arXiv:2208.10520 [hep-th]].
- P. Calabrese and J. L. Cardy, “Time-dependence of correlation functions following a quantum quench,” Phys. Rev. Lett. 96, 136801 (2006) doi:10.1103/PhysRevLett.96.136801 [arXiv:cond-mat/0601225 [cond-mat]] [arXiv:cond-mat/0601225 [cond-mat]].
- R. Fan, Y. Gu, A. Vishwanath and X. Wen, “Floquet conformal field theories with generally deformed Hamiltonians,” SciPost Phys. 10, no.2, 049 (2021) doi:10.21468/SciPostPhys.10.2.049 [arXiv:2011.09491 [hep-th]].
- X. Wen and J. Q. Wu, ‘Floquet conformal field theory,” [arXiv:1805.00031 [cond-mat.str-el]]. [arXiv:1805.00031 [cond-mat.str-el]].
- X. Wen, R. Fan, A. Vishwanath and Y. Gu, “Periodically, quasiperiodically, and randomly driven conformal field theories,” Phys. Rev. Res. 3, no.2, 023044 (2021) doi:10.1103/PhysRevResearch.3.023044 [arXiv:2006.10072 [cond-mat.stat-mech]].
- X. Wen, Y. Gu, A. Vishwanath and R. Fan, “Periodically, Quasi-periodically, and Randomly Driven Conformal Field Theories (II): Furstenberg’s Theorem and Exceptions to Heating Phases,” SciPost Phys. 13, no.4, 082 (2022) doi:10.21468/SciPostPhys.13.4.082 [arXiv:2109.10923 [cond-mat.stat-mech]].
- D. Das, R. Ghosh and K. Sengupta, “Conformal Floquet dynamics with a continuous drive protocol,” JHEP 05, 172 (2021) doi:10.1007/JHEP05(2021)172 [arXiv:2101.04140 [hep-th]].
- X. Wen, R. Fan and A. Vishwanath, “Floquet’s Refrigerator: Conformal Cooling in Driven Quantum Critical Systems,” [arXiv:2211.00040 [cond-mat.str-el]].
- N. Ishibashi and T. Tada, “Infinite circumference limit of conformal field theory,” J. Phys. A 48, no.31, 315402 (2015) doi:10.1088/1751-8113/48/31/315402 [arXiv:1504.00138 [hep-th]].
- VS Viswanath and Gerhard Müllerller, “The Recursion Method: Application to Many Body Dynamics,” (Springer, 2008)
- A. L. Fitzpatrick, J. Kaplan and M. T. Walters, “Universality of Long-Distance AdS Physics from the CFT Bootstrap,” JHEP 08 (2014), 145 doi:10.1007/JHEP08(2014)145 [arXiv: 1403.6829 [hep-th]].
- A. L. Fitzpatrick, J. Kaplan and M. T. Walters, “Virasoro Conformal Blocks and Thermality from Classical Background Fields,” JHEP 11 (2015), 200 doi:10.1007/JHEP11(2015)200 [arXiv:1501.05315 [hep-th]].
- A. Bhattacharya, P. Nandy, P. P. Nath and H. Sahu, “On Krylov complexity in open systems: an approach via bi-Lanczos algorithm,” JHEP 12 (2023), 066 doi:10.1007/JHEP12(2023)066 [arXiv:2303.04175 [quant-th]]
- S. Das, B. Ezhuthachan, A. Kundu, S. Porey, B. Roy and K. Sengupta, “Brane detectors of a dynamical phase transition in a driven CFT,” SciPost Phys. 15 (2023) no.5, 202 doi:10.21468/SciPostPhys.15.5.202 [arXiv:2212.04201 [hep-th]].