Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tree decompositions meet induced matchings: beyond Max Weight Independent Set (2402.15834v1)

Published 24 Feb 2024 in cs.DS, cs.DM, and math.CO

Abstract: For a tree decomposition $\mathcal{T}$ of a graph $G$, by $\mu(\mathcal{T})$ we denote the size of a largest induced matching in $G$ all of whose edges intersect one bag of $\mathcal{T}$. Induced matching treewidth of a graph $G$ is the minimum value of $\mu(\mathcal{T})$ over all tree decompositions $\mathcal{T}$ of $G$. Yolov [SODA 2018] proved that Max Weight Independent Set can be solved in polynomial time for graphs of bounded induced matching treewidth. In this paper we explore what other problems are tractable in such classes of graphs. As our main result, we give a polynomial-time algorithm for Min Weight Feedback Vertex Set. We also provide some positive results concerning packing induced subgraphs, which in particular imply a PTAS for the problem of finding a largest induced subgraph of bounded treewidth. These results suggest that in graphs of bounded induced matching treewidth, one could find in polynomial time a maximum-weight induced subgraph of bounded treewidth satisfying a given CMSO$_2$ formula. We conjecture that such a result indeed holds and prove it for graphs of bounded tree-independence number, which form a rich and important family of subclasses of graphs of bounded induced matching treewidth. We complement these algorithmic results with a number of complexity and structural results concerning induced matching treewidth.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. Tree independence number for (even hole, diamond, pyramid)-free graphs. CoRR, abs/2305.16258, 2023.
  2. Induced subgraphs and tree decompositions III. Three-path-configurations and logarithmic treewidth. Advances in Combinatorics, 2022:6:1–29, 2022.
  3. Induced subgraphs of bounded treewidth and the container method. In D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1948–1964. SIAM, 2021.
  4. Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree. J. Combin. Theory Ser. B, 157:144–175, 2022.
  5. I. Adler. Width functions for hypertree decompositions. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2006.
  6. Integer programming formulations and benders decomposition for the maximum induced matching problem. INFORMS J. Comput., 30(1):43–56, 2018.
  7. V. E. Alekseev. An upper bound for the number of maximal independent sets in a graph. Discrete Mathematics and Applications, 17(4):355–359, 2007.
  8. Complexity of finding embeddings in a k𝑘kitalic_k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, Apr. 1987.
  9. R. Balakrishnan and P. Paulraja. Powers of chordal graphs. J. Austral. Math. Soc. Ser. A, 35(2):211–217, 1983.
  10. Defective coloring on classes of perfect graphs. Discrete Math. Theor. Comput. Sci., 24(1):18, 2022. Id/No 1.
  11. The k𝑘kitalic_k-separator problem: polyhedra, complexity and approximation results. J. Comb. Optim., 29(1):276–307, 2015.
  12. Close relatives of feedback vertex set without single-exponential algorithms parameterized by treewidth. In Y. Cao and M. Pilipczuk, editors, 15th International Symposium on Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 180 of LIPIcs, pages 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
  13. A logic-based algorithmic meta-theorem for mim-width. In N. Bansal and V. Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3282–3304. SIAM, 2023.
  14. New width parameters for independent set: One-sided-mim-width and neighbor-depth. CoRR, abs/2302.10643, 2023.
  15. New width parameters for independent set: one-sided-mim-width and neighbor-depth. In Graph-theoretic concepts in computer science, volume 14093 of Lecture Notes in Comput. Sci., pages 72–85. Springer, Cham, 2023.
  16. U. Bertele and F. Brioschi. Nonserial dynamic programming. Academic Press, 1972.
  17. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
  18. Treewidth is NP-complete on cubic graphs (and related results). CoRR, abs/2301.10031, 2023.
  19. A ck⁢nsuperscript𝑐𝑘𝑛c^{k}nitalic_c start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_n 5-approximation algorithm for treewidth. SIAM J. Comput., 45(2):317–378, 2016.
  20. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.
  21. Sparse graphs with bounded induced cycle packing number have logarithmic treewidth. In N. Bansal and V. Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3006–3028. SIAM, 2023.
  22. Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica, 7(5&6):555–581, 1992.
  23. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput., 31(1):212–232, 2001.
  24. Comparing width parameters on graph classes. CoRR, abs/2308.05817, 2023.
  25. K. Cameron and P. Hell. Independent packings in structured graphs. Math. Program., 105(2-3, Ser. B):201–213, 2006.
  26. From gap-exponential time hypothesis to fixed parameter tractable inapproximability: Clique, dominating set, and more. SIAM J. Comput., 49(4):772–810, 2020.
  27. B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput., 85(1):12–75, 1990.
  28. Parameterized algorithms. Springer, Cham, 2015.
  29. Computing tree decompositions with small independence number. CoRR, abs/2207.09993, 2022.
  30. Treewidth versus clique number. III. tree-independence number of graphs with a forbidden structure. CoRR, abs/2206.15092, 2022.
  31. Treewidth versus clique number. I. Graph classes with a forbidden structure. SIAM J. Discrete Math., 35(4):2618–2646, 2021.
  32. Treewidth versus clique number. II. Tree-independence number. J. Combin. Theory Ser. B, 164:404–442, 2024.
  33. I. Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Electron. Colloquium Comput. Complex., TR16-128, 2016.
  34. P. Duchet. Classical perfect graphs: an introduction with emphasis on triangulated and interval graphs. In Topics on perfect graphs, volume 88 of North-Holland Math. Stud., pages 67–96. North-Holland, Amsterdam, 1984.
  35. Distance-d𝑑ditalic_d independent set problems for bipartite and chordal graphs. J. Comb. Optim., 27(1):88–99, 2014.
  36. Large induced subgraphs via triangulations and CMSO. SIAM J. Comput., 44(1):54–87, 2015.
  37. Finding large induced sparse subgraphs in C>tsubscript𝐶absent𝑡C_{>t}italic_C start_POSTSUBSCRIPT > italic_t end_POSTSUBSCRIPT-free graphs in quasipolynomial time. In S. Khuller and V. V. Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 330–341. ACM, 2021.
  38. Finding large induced sparse subgraphs in C>tsubscript𝐶absent𝑡C_{>t}italic_C start_POSTSUBSCRIPT > italic_t end_POSTSUBSCRIPT-free graphs in quasipolynomial time. CoRR, abs/2007.11402v3, 2021.
  39. M. Grohe and S. Kreutzer. Methods for algorithmic meta theorems. In Model Theoretic Methods in Finite Combinatorics - AMS-ASL Joint Special Session, Washington, DC, USA, January 5-8, 2009, volume 558 of Contemporary Mathematics, pages 181–206. American Mathematical Society, 2009.
  40. Polynomial-time algorithm for Maximum Weight Independent Set on P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. ACM Trans. Algorithms, 18(1):4:1–4:57, jan 2022.
  41. R. Halin. S-functions for graphs. Journal of Geometry, 8(1):171–186, 1976.
  42. Improper coloring of unit disk graphs. Networks, 54(3):150–164, 2009.
  43. A near-optimal planarization algorithm. In C. Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1802–1811. SIAM, 2014.
  44. A width parameter useful for chordal and co-comparability graphs. Theoret. Comput. Sci., 704:1–17, 2017.
  45. T. Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 184–192. IEEE, 2021.
  46. T. Korhonen. Grid induced minor theorem for graphs of small degree. J. Combin. Theory Ser. B, 160:206–214, 2023.
  47. T. Korhonen and D. Lokshtanov. An improved parameterized algorithm for treewidth. In B. Saha and R. A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 528–541. ACM, 2023.
  48. E. Lee. Partitioning a graph into small pieces with applications to path transversal. In P. N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1546–1558. SIAM, 2017.
  49. E. Lee. Partitioning a graph into small pieces with applications to path transversal. Math. Program., 177(1-2, Ser. A):1–19, 2019.
  50. B. Lin. Constant approximating k-clique is W[1]-hard. In S. Khuller and V. V. Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749–1756. ACM, 2021.
  51. Independent set in P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs in polynomial time. In C. Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 570–581. SIAM, 2014.
  52. P. Manurangsi and P. Raghavendra. A birthday repetition theorem and complexity of approximating dense CSPs. In I. Chatzigiannakis, P. Indyk, F. Kuhn, and A. Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 78:1–78:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
  53. D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM, 60(6):42:1–42:51, 2013.
  54. Parameterized algorithms for even cycle transversal. In M. C. Golumbic, M. Stern, A. Levy, and G. Morgenstern, editors, Graph-Theoretic Concepts in Computer Science - 38th International Workshop, WG 2012, Jerusalem, Israel, June 26-28, 2012, Revised Selcted Papers, volume 7551 of Lecture Notes in Computer Science, pages 172–183. Springer, 2012.
  55. A. Munaro and S. Yang. On algorithmic applications of sim-width and mim-width of (H1,H2)subscript𝐻1subscript𝐻2(H_{1},H_{2})( italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )-free graphs. Theoret. Comput. Sci., 955:Paper No. 113825, 20, 2023.
  56. J. Nešetřil and P. O. de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.
  57. S. D. Nikolopoulos and L. Palios. Minimal separators in P4subscript𝑃4P_{4}italic_P start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT-sparse graphs. Discrete Math., 306(3):381–392, 2006.
  58. The complexity of dissociation set problems in graphs. Discrete Appl. Math., 159(13):1352–1366, 2011.
  59. Feedback Vertex Set and Even Cycle Transversal for H𝐻Hitalic_H-free graphs: Finding large block graphs. SIAM J. Discret. Math., 36(4):2453–2472, 2022.
  60. Maximum weight induced matching in some subclasses of bipartite graphs. J. Comb. Optim., 40(3):713–732, 2020.
  61. M. Pilipczuk. A tight lower bound for Vertex Planarization on graphs of bounded treewidth. Discret. Appl. Math., 231:211–216, 2017.
  62. S. Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae, 15:307–309, 1974.
  63. F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc. (2), 30:264–286, 1929.
  64. N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B, 36(1):49–64, 1984.
  65. N. Robertson and P. D. Seymour. Graph Minors .XIII. The Disjoint Paths Problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995.
  66. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.
  67. R. Scheidweiler and S. Wiederrecht. On chordal graph and line graph squares. Discrete Appl. Math., 243:239–247, 2018.
  68. A. Scott and P. D. Seymour. A survey of χ𝜒\chiitalic_χ-boundedness. J. Graph Theory, 95(3):473–504, 2020.
  69. A new algorithm for generating all the maximal independent sets. SIAM J. Comput., 6(3):505–517, 1977.
  70. M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput., 10(2):310–327, 1981.
  71. N. Yolov. Minor-matching hypertree width. In A. Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 219–233. SIAM, 2018.
  72. Approximate association via dissociation. In Graph-theoretic Concepts in Computer Science, volume 9941 of Lecture Notes in Comput. Sci., pages 13–24. Springer, Berlin, 2016.
  73. D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput., 3:103–128, 2007.
Citations (7)

Summary

We haven't generated a summary for this paper yet.