Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering in Dynamic Environments: A Framework for Benchmark Dataset Generation With Heterogeneous Changes (2402.15731v2)

Published 24 Feb 2024 in cs.LG and cs.NE

Abstract: Clustering in dynamic environments is of increasing importance, with broad applications ranging from real-time data analysis and online unsupervised learning to dynamic facility location problems. While meta-heuristics have shown promising effectiveness in static clustering tasks, their application for tracking optimal clustering solutions or robust clustering over time in dynamic environments remains largely underexplored. This is partly due to a lack of dynamic datasets with diverse, controllable, and realistic dynamic characteristics, hindering systematic performance evaluations of clustering algorithms in various dynamic scenarios. This deficiency leads to a gap in our understanding and capability to effectively design algorithms for clustering in dynamic environments. To bridge this gap, this paper introduces the Dynamic Dataset Generator (DDG). DDG features multiple dynamic Gaussian components integrated with a range of heterogeneous, local, and global changes. These changes vary in spatial and temporal severity, patterns, and domain of influence, providing a comprehensive tool for simulating a wide range of dynamic scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.
  2. R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on neural networks, vol. 16, no. 3, pp. 645–678, 2005.
  3. R. H. Moulton, H. L. Viktor, N. Japkowicz, and J. Gama, “Clustering in the presence of concept drift,” in Machine Learning and Knowledge Discovery in Databases.   Springer, 2019, pp. 339–355.
  4. X. Zhan, J. Xie, Z. Liu, Y.-S. Ong, and C. C. Loy, “Online deep clustering for unsupervised representation learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 6688–6697.
  5. M. Karatas, “A dynamic multi-objective location-allocation model for search and rescue assets,” European Journal of Operational Research, vol. 288, no. 2, pp. 620–633, 2021.
  6. T. Li, L. Chen, C. S. Jensen, T. B. Pedersen, Y. Gao, and J. Hu, “Evolutionary clustering of moving objects,” in International Conference on Data Engineering.   IEEE, 2022, pp. 2399–2411.
  7. J. Handl and B. Meyer, “Ant-based and swarm-based clustering,” Swarm Intelligence, vol. 1, pp. 95–113, 2007.
  8. T. T. Nguyen, “Continuous dynamic optimisation using evolutionary algorithms,” Ph.D. dissertation, University of Birmingham, 2011.
  9. D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A survey of evolutionary continuous dynamic optimization over two decades – part A,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 609–629, 2021.
  10. D. Yazdani, M. N. Omidvar, D. Yazdani, J. Branke, T. T. Nguyen, A. H. Gandomi, Y. Jin, and X. Yao, “Robust optimization over time: A critical review,” IEEE Transactions on Evolutionary Computation, Early access, 2023.
  11. E. R. Hruschka, R. J. Campello, A. A. Freitas et al., “A survey of evolutionary algorithms for clustering,” IEEE Transactions on systems, man, and cybernetics, Part C, vol. 39, no. 2, pp. 133–155, 2009.
  12. C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, and P. N. Suganthan, “Benchmark generator for cec’2009 competition on dynamic optimization,” Center for Computational Intelligence, Tech. Rep., 2008.
  13. J. J. Grefenstette, “Evolvability in dynamic fitness landscapes: a genetic algorithm approach,” in Congress on Evolutionary Computation, vol. 3.   IEEE, 1999, pp. 2031–2038.
  14. C. Li, T. T. Nguyen, S. Zeng, M. Yang, and M. Wu, “An open framework for constructing continuous optimization problems,” IEEE Transactions on Cybernetics, vol. 49, no. 6, pp. 2316–2330, 2018.
  15. J. Branke, “Memory enhanced evolutionary algorithms for changing optimization problems,” in Congress on Evolutionary Computation, vol. 3.   IEEE, 1999, pp. 1875–1882.
  16. D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A survey of evolutionary continuous dynamic optimization over two decades – part B,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 630–650, 2021.
  17. D. Yazdani, M. N. Omidvar, R. Cheng, J. Branke, T. T. Nguyen, and X. Yao, “Benchmarking continuous dynamic optimization: survey and generalized test suite,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3380–3393, 2022.
  18. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under concept drift: A review,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.
  19. T. Bartz-Beielstein, C. Doerr, D. v. d. Berg, J. Bossek, S. Chandrasekaran, T. Eftimov, A. Fischbach, P. Kerschke, W. La Cava, M. Lopez-Ibanez et al., “Benchmarking in optimization: Best practice and open issues,” arXiv preprint arXiv:2007.03488, 2020.
  20. D. Yazdani, “The source code of dynamic dataset generator,” in GIThub, 2024. [Online]. Available: https://github.com/Danial-Yazdani/DDG
  21. C. Li and S. Yang, “A generalized approach to construct benchmark problems for dynamic optimization,” in Simulated Evolution and Learning.   Springer, 2008, pp. 391–400.
  22. C. Li, S. Yang, and M. Yang, “An adaptive multi-swarm optimizer for dynamic optimization problems,” Evolutionary Computation, vol. 22, no. 4, pp. 559–594, 2014.
  23. A. L. Suárez-Cetrulo, D. Quintana, and A. Cervantes, “A survey on machine learning for recurring concept drifting data streams,” Expert Systems with Applications, vol. 213, p. 118934, 2023.
  24. J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. d. Carvalho, and J. Gama, “Data stream clustering: A survey,” ACM Computing Surveys, vol. 46, no. 1, pp. 1–31, 2013.
  25. A. B. Arabani and R. Z. Farahani, “Facility location dynamics: An overview of classifications and applications,” Computers & Industrial Engineering, vol. 62, no. 1, pp. 408–420, 2012.
  26. C. Martella, J. Li, C. Conrado, and A. P. Vermeeren, “On current crowd management practices and the need for increased situation awareness, prediction, and intervention,” Safety Science, vol. 91, pp. 381 – 393, 2017.
  27. J. Handl and J. Knowles, “Evolutionary multiobjective clustering,” in International Conference on Parallel Problem Solving from Nature.   Springer, 2004, pp. 1081–1091.
  28. A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “A survey of multiobjective evolutionary clustering,” ACM Computing Surveys, vol. 47, no. 4, pp. 1–46, 2015.
  29. S. Bandyopadhyay and U. Maulik, “An evolutionary technique based on k-means algorithm for optimal clustering in rn,” Information Sciences, vol. 146, no. 1-4, pp. 221–237, 2002.
  30. D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 2, pp. 224–227, 1979.
  31. J. Handl, M. Garza-Fabre, and A. José-García, “Evolutionary clustering and community detection,” in Handbook of Evolutionary Machine Learning.   Springer, 2023, pp. 151–169.
  32. J. Handl and J. Knowles, “An evolutionary approach to multiobjective clustering,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 1, pp. 56–76, 2007.
  33. M. Garza-Fabre, J. Handl, and J. Knowles, “An improved and more scalable evolutionary approach to multiobjective clustering,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 4, pp. 515–535, 2017.
  34. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept drift adaptation,” ACM Computing Surveys, vol. 46, no. 4, pp. 1–37, 2014.
  35. A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and T. Seidl, “MOA: Massive online analysis, a framework for stream classification and clustering,” in First Workshop on Applications of Pattern Analysis.   PMLR, 2010, pp. 44–50.
  36. C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework for clustering evolving data streams,” in International Conference on Very Large Data Bases.   Elsevier, 2003, pp. 81–92.
  37. R. Wan, X. Yan, and X. Su, “A weighted fuzzy clustering algorithm for data stream,” in International Colloquium on Computing, Communication, Control, and Management, vol. 1.   IEEE, 2008, pp. 360–364.
  38. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for projected clustering of high dimensional data streams,” in International conference on Very large data bases, 2004, pp. 852–863.
  39. G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean, “Characterizing concept drift,” Data Mining and Knowledge Discovery, vol. 30, no. 4, pp. 964–994, 2016.
  40. D. Yazdani, M. N. Omidvar, D. Yazdani, K. Deb, and A. H. Gandomi, “Gnbg: A generalized and configurable benchmark generator for continuous numerical optimization,” arXiv preprint arXiv:2312.07083, 2023.
  41. K. Trojanowski and Z. Michalewicz, “Searching for optima in non-stationary environments,” in Congress on Evolutionary Computation, vol. 3, 1999, pp. 1843–1850.
  42. M. Peng, Z. She, D. Yazdani, D. Yazdani, W. Luo, C. Li, J. Branke, T. T. Nguyen, A. H. Gandomi, Y. Jin et al., “Evolutionary dynamic optimization laboratory: A matlab optimization platform for education and experimentation in dynamic environments,” arXiv preprint arXiv:2308.12644, 2023.
  43. T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic optimization: A survey of the state of the art,” Swarm and Evolutionary Computation, vol. 6, pp. 1 – 24, 2012.
  44. H. Richter, “Detecting change in dynamic fitness landscapes,” in Congress on Evolutionary Computation.   IEEE, 2009, pp. 1613–1620.
  45. T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-convergence in dynamic environments,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 459–472, 2006.
  46. T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic optimization problems,” in Swarm Intelligence: Introduction and Applications, C. Blum and D. Merkle, Eds.   Springer Lecture Notes in Computer Science, 2008, pp. 193–217.
  47. D. Yazdani, D. Yazdani, D. Yazdani, M. N. Omidvar, A. H. Gandomi, and X. Yao, “A species-based particle swarm optimization with adaptive population size and deactivation of species for dynamic optimization problems,” ACM Transactions on Evolutionary Learning and Optimization, vol. 3, no. 4, pp. 1–25, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.