Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Duality Analysis of Kernel Ridge Regression in the Noiseless Regime (2402.15718v1)

Published 24 Feb 2024 in stat.ML and cs.LG

Abstract: In this paper, we conduct a comprehensive analysis of generalization properties of Kernel Ridge Regression (KRR) in the noiseless regime, a scenario crucial to scientific computing, where data are often generated via computer simulations. We prove that KRR can attain the minimax optimal rate, which depends on both the eigenvalue decay of the associated kernel and the relative smoothness of target functions. Particularly, when the eigenvalue decays exponentially fast, KRR achieves the spectral accuracy, i.e., a convergence rate faster than any polynomial. Moreover, the numerical experiments well corroborate our theoretical findings. Our proof leverages a novel extension of the duality framework introduced by Chen et al. (2023), which could be useful in analyzing kernel-based methods beyond the scope of this work.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com