Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilizing remote entanglement via waveguide dissipation (2402.15701v1)

Published 24 Feb 2024 in quant-ph

Abstract: Distributing entanglement between remote sites is integral to quantum networks. Here, we demonstrate the autonomous stabilization of remote entanglement between a pair of non-interacting superconducting qubits connected by an open waveguide on a chip. In this setting, the interplay between a classical continuous drive - supplied through the waveguide - and dissipation into the waveguide stabilizes the qubit pair in a dark state, which, asymptotically, takes the form of a Bell state. We use field-quadrature measurements of the photons emitted to the waveguide to perform quantum state tomography on the stabilized states, where we find a concurrence of $0.504{+0.007}_{-0.029}$ in the optimal setting with a stabilization time constant of 56 $\pm$ 4 ns. We examine the imperfections within our system and discuss avenues for enhancing fidelities and achieving scalability in future work. The decoherence-protected, steady-state remote entanglement offered via dissipative stabilization may find applications in distributed quantum computing, sensing, and communication.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Physical Review Letters 67, 661 (1991).
  2. S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018).
  3. D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999), quant-ph/9908010 .
  4. J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum Reservoir Engineering with Laser Cooled Trapped Ions, Physical Review Letters 77, 4728 (1996).
  5. F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nature Physics 5, 633 636 (2009).
  6. M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Dissipative Preparation of Entanglement in Optical Cavities, Physical Review Letters 106, 090502 (2011), 1011.1441 .
  7. F. Reiter, D. Reeb, and A. S. Sørensen, Scalable Dissipative Preparation of Many-Body Entanglement, Physical Review Letters 117, 040501 (2015), 1501.06611 .
  8. G. S. Agarwal and R. R. Puri, Cooperative behavior of atoms irradiated by broadband squeezed light, Physical Review A 41, 3782 (1990).
  9. B. Kraus and J. I. Cirac, Discrete entanglement distribution with squeezed light, Phys. Rev. Lett. 92, 013602 (2004).
  10. K. Stannigel, P. Rabl, and P. Zoller, Driven-dissipative preparation of entangled states in cascaded quantum-optical networks, New Journal of Physics 14, 063014 (2012), 1112.1690 .
  11. A. L. Grimsmo and A. Blais, Squeezing and quantum state engineering with Josephson travelling wave amplifiers, npj Quantum Information 3, 20 (2017), 1607.07908 .
  12. L. C. G. Govia, A. Lingenfelter, and A. A. Clerk, Stabilizing two-qubit entanglement by mimicking a squeezed environment, Physical Review Research 4, 023010 (2022), 2110.06201 .
  13. R. Gutiérrez-Jáuregui, A. Asenjo-Garcia, and G. S. Agarwal, Dissipative stabilization of dark quantum dimers via squeezed vacuum, Physical Review Research 5, 013127 (2023), 2210.03141 .
  14. W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80, 2245 (1998).
  15. C. Joshi, F. Yang, and M. Mirhosseini, Resonance Fluorescence of a Chiral Artificial Atom, Physical Review X 13, 021039 (2023).
  16. N. Gheeraert, S. Kono, and Y. Nakamura, Programmable directional emitter and receiver of itinerant microwave photons in a waveguide, Phys. Rev. A 102, 053720 (2020).
  17. A. F. Kockum, G. Johansson, and F. Nori, Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics, Phys. Rev. Lett. 120, 140404 (2018).
  18. B. Kannan, Waveguide Quantum Electrodynamics with Superconducting Qubits, Ph.D. thesis, Massachusetts Institute of Technology (2022).
  19. C. Eichler, Experimental characterization of quantum microwave radiation and its entanglement with a superconducting qubit, Ph.D. thesis, ETH Zurich (2013).
  20. V. T. d. S. Ferreira, Waveguide Quantum Electrodynamics with Superconducting Slow-Light Waveguide Circuits. Dissertation, Ph.D. thesis, California Institute of Technology (2022).
  21. J. Johansson, P. Nation, and F. Nori, Qutip: An open-source python framework for the dynamics of open quantum systems, Computer Physics Communications 183, 1760–1772 (2012).
  22. J. Johansson, P. Nation, and F. Nori, Qutip 2: A python framework for the dynamics of open quantum systems, Computer Physics Communications 184, 1234–1240 (2013).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com