Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spin-2 Green's Functions on Kerr in Radiation Gauge (2402.15468v2)

Published 23 Feb 2024 in gr-qc and hep-th

Abstract: We construct retarded and advanced Green's functions for gravitational perturbations in Kerr in an ingoing radiation gauge. Our Green's functions have a frequency domain piece that has previously been obtained by Ori [Phys. Rev. D 67 (2003)] based on the Chrzanowski-Cohen-Kegeles metric reconstruction method. As is well known, this piece by itself is not sufficient to obtain an actual Green's function. We show how to complete it with a piece based on a method by Green et al. [Class. Quant. Grav. 37 (2020)]. The completion piece has a completely explicit form in the time-domain and is supported on pairs of points on the same outgoing principal null geodesic which are in the appropriate causal order. We expect our Green's functions to be useful for gravitational self-force calculations and other perturbation problems on Kerr spacetime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. L. F. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant,” Nucl. Phys. B 195, 76-96 (1982), doi:10.1016/0550-3213(82)90049-9
  2. L. Andersson, T. Bäckdahl, P. Blue and S. Ma, “Nonlinear Radiation Gauge for Near Kerr Spacetimes,” Commun. Math. Phys. 396, 45-90 (2022), doi:10.1007/s00220-022-04461-3
  3. L. Andersson, S. Ma, C. Paganini, and B. F. Whiting, “Mode stability on the real axis,” J. Math. Phys. 58, 072501 (2017).
  4. B. Araneda, “Symmetry operators and decoupled equations for linear fields on black hole spacetimes,” Class. Quant. Grav. 34, 035002 (2016), doi: 10.1088/1361-6382/aa51ff
  5. S. Aksteiner, “Geometry and analysis on black hole spacetimes,”, Ph.D. thesis (2014), doi:10.15488/8214
  6. M. Casals, C. Kavanagh, and A. C. Ottewill, “High-order late-time tail in a Kerr spacetime,” Phys. Rev. D 94, 124053 (2016), doi:10.1103/PhysRevD.94.124053
  7. S. Chandrasekhar, “The Mathematical Theory of Black Holes,” Fundam. Theor. Phys. 9, 5-26 (1984), doi:10.1007/978-94-009-6469-3_2
  8. S. Chandrasekhar, “On Algebraically Special Perturbations of Black Holes," Proc. R. Soc. Ser. A 392, 1 (1984), doi: 10.1098/rspa.1984.0021
  9. P. L. Chrzanowski, “Vector Potential and Metric Perturbations of a Rotating Black Hole,” Phys. Rev. D 11, 2042-2062 (1975), doi:10.1103/PhysRevD.11.2042
  10. M. Dafermos, I. Rodnianski, and Y. Shlapentokh-Rothman. “Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case| a|< M.” Annals of Mathematics 183, 787-913 (2016), doi: 10.4007/annals.2016.183.3.2
  11. S. L. Detweiler and B. F. Whiting, “Self-force via a Green’s function decomposition,” Phys. Rev. D 67, 024025 (2003), doi:10.1103/PhysRevD.67.024025
  12. S. R. Dolan, C. Kavanagh, and B. Wardell, “Gravitational perturbations of rotating black holes in Lorenz gauge", Phys. Rev. Lett. 128, 151101 (2022), doi: 10.1103/PhysRevLett.128.151101
  13. S. R. Dolan, L. Durkan, C. Kavanagh, and B. Wardell, “Metric perturbations of Kerr spacetime in Lorenz gauge: Circular equatorial orbits", arXiv:2306.16459 [gr-qc] (2023)
  14. K. Fredenhagen and R. Haag, “On the derivation of Hawking radiation associated with the formation of a black hole.” Comm. Math. Phys. 127, 273-284 (1990), doi: 10.1007/BF02096757
  15. R. P. Geroch, A. Held, and R. Penrose, “A space-time calculus based on pairs of null directions,” J. Math. Phys. 14, 874-881 (1973), doi:10.1063/1.1666410
  16. S. R. Green, S. Hollands, and P. Zimmerman, “Teukolsky formalism for nonlinear Kerr perturbations,” Class. Quant. Grav. 37, 075001 (2020), doi:10.1088/1361-6382/ab7075
  17. S. R. Green, “Lorenz-gauge reconstruction for Teukolsky solutions with sources in electromagnetism," in Presentation at the 24th Capra meeting on Radiation Reaction in General Relativity (2021), https://pirsa.org/21060044.
  18. A. Held, “A formalism for the investigation of algebraically special metrics. I.” Communications in Mathematical Physics 37, 311-326 (1974), doi: 10.1007/BF01645944
  19. Hollands, Stefan, and Robert M. Wald. “Stability of black holes and black branes.” Communications in Mathematical Physics 321, 629-680 (2013), doi: 10.1007/s00220-012-1638-1
  20. S. Hollands and R. M. Wald, “Quantum fields in curved spacetime,” Phys. Rept. 574, 1-35 (2015), doi:10.1016/j.physrep.2015.02.001
  21. C. Hunter and B. Guerrieri, “The eigenvalues of the angular spheroidal wave equation", Stud. Appl. Math. 66, 217–240 (1982), doi: 10.1002/sapm1982663217
  22. L. S. Kegeles and J. M. Cohen, “Constructive procedure for perturbations of spacetimes,” Phys. Rev. D 19, 1641-1664 (1979), doi:10.1103/PhysRevD.19.1641
  23. W. Kinnersley, “Type D Vacuum Metrics,” J. Math. Phys. 10 1195-1203 (1969), doi:10.1063/1.1664958
  24. J. M. Martín-García, “XAct: Efficient tensor computer algebra for Mathematica,” http://xact.es/.
  25. M. Van De Meent and A. G. Shah, “Metric perturbations produced by eccentric equatorial orbits around a Kerr black hole", Phys. Rev. D 92, 064025 (2015), doi: 10.1103/PhysRevD.92.064025
  26. A. Ori, “Reconstruction of inhomogeneous metric perturbations and electromagnetic four potential in Kerr space-time,” Phys. Rev. D 67, 124010 (2003), doi:10.1103/PhysRevD.67.124010
  27. E. Poisson, A. Pound and I. Vega, “The motion of point particles in curved spacetime,” Living Rev. Rel. 14, 7 (2011), doi: 10.12942/lrr-2004-6
  28. A. Pound and B. Wardell, “Black Hole Perturbation Theory and Gravitational Self-Force”. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy, Springer, Singapore (2021), doi: 10.1007/978-981-15-4702-7_38-1
  29. A. Pound, C. Merlin and L. Barack, “Gravitational self-force from radiation-gauge metric perturbations,” Phys. Rev. D 89, 024009 (2014), doi:10.1103/PhysRevD.89.024009
  30. A. Pound, “Nonlinear gravitational self-force. I. Field outside a small body,” Phys. Rev. D 86, 084019 (2012), doi:10.1103/PhysRevD.86.084019
  31. K. Prabhu, R. M. Wald, “Canonical Energy and Hertz Potentials for Perturbations of Schwarzschild Spacetime,” Class. Quant. Grav. 35, 235004 (2018), doi:10.1088/1361-6382/aae9ae
  32. L. Price, “Developments in the perturbation theory of algebraically special spacetimes,” PhD thesis U. Florida (2007)
  33. L. R. Price, K. Shankar, and B. F. Whiting, “On the existence of radiation gauges in Petrov type II spacetimes,” Class. Quant. Grav. 24, 2367 (2007), doi: 10.1088/0264-9381/24/9/014
  34. G. Nagy, , O. E. Ortiz and O. A. Reula. “Strongly hyperbolic second order Einstein’s evolution equations.” Physical Review D 70, 044012 (2004), 10.1103/PhysRevD.70.044012
  35. V. Toomani, P. Zimmerman, A. Spiers, S. Hollands, A. Pound and S. R. Green, “New metric reconstruction scheme for gravitational self-force calculations,” Class. Quant. Grav. 39, 015019 (2022) doi:10.1088/1361-6382/ac37a5
  36. E. W. Leaver, “Spectral decomposition of the perturbation response of the Schwarzschild geometry.” Phys. Rev. D 34, 384 (1986), doi: 10.1103/PhysRevD.34.384
  37. M. Sasaki, T. Nakamura, “A class of new perturbation equations for the Kerr black geometry,” Phys. Lett. A, volume 89, 68-70 (1982), doi: 10.1016/0375-9601(82)90507-2
  38. M. Sasaki, T. Nakamura, “Gravitational Radiation from a Kerr Black Hole. I. Formulation and a Method for Numerical Analysis,” Progress of Theoretical Physics 67, 1788–1809 (1982), doi: 10.1143/PTP.67.1788
  39. A. Spiers, A. Pound, and J. Moxon, “Second-order Teukolsky formalism in Kerr spacetime: Formulation and nonlinear source,” Phys. Rev. D 108, 064002 (2023), doi: 10.1103/PhysRevD.108.064002
  40. A. Spiers, A. Pound, and B. Wardell, “Second-order perturbations of the Schwarzschild spacetime: practical, covariant and gauge-invariant formalisms," arXiv:2306.17847 [gr-qc] (2023).
  41. S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635-647 (1973), doi:10.1086/152444
  42. S. A. Teukolsky, “Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett. 29, 1114-1118 (1972), doi: 10.1103/PhysRevLett.29.1114
  43. R. Teixeira da Costa, “Mode stability for the Teukolsky equation on extremal and subextremal Kerr spacetimes,” Commun. Math. Phys. 378, 705–78 (2020), doi: 10.1007/s00220-020-03796-z
  44. Robert M. Wald, “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations,” Phys. Rev. Lett. 41, 203 (1979), doi: 10.1103/PhysRevLett.41.203
  45. Whiting, Bernard F. “Mode stability of the Kerr black hole.” Journal of Mathematical Physics 30, 1301-1305 (1989), doi: 10.1063/1.528308

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com