2000 character limit reached
Process tensor approaches to modeling two-dimensional spectroscopy (2402.15454v3)
Published 23 Feb 2024 in quant-ph and cond-mat.mes-hall
Abstract: Problems in the field of open quantum systems often involve an environment that strongly influences the dynamics of excited states. Here we present a numerical method to model optical spectra of non-Markovian open quantum systems. The method employs a process tensor framework to efficiently compute multi-time correlations in a numerically exact way. To demonstrate the efficacy of our method, we compare 2D electronic spectroscopy simulations produced through our method to Markovian master equation simulations in three different system-bath coupling regimes.
- L. Wang, M. A. Allodi, and G. S. Engel, Quantum coherences reveal excited-state dynamics in biophysical systems, Nat. Rev. Chem. 3, 477 (2019).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
- I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
- S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
- K. L. M. Lewis and J. P. Ogilvie, Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy, J. Phys. Chem. Lett. 3, 503 (2012).
- E. Collini, 2D electronic spectroscopic techniques for quantum technology applications, J. Phys. Chem. C 125, 13096 (2021).
- M. Cho, Coherent two-dimensional optical spectroscopy, Chem. Rev. 108, 1331 (2008).
- G. Guarnieri, A. Smirne, and B. Vacchini, Quantum regression theorem and non-Markovianity of quantum dynamics, Phys. Rev. A 90, 022110 (2014).
- R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys. (Amsterdam) 349, 117 (2014).
- M. R. Jørgensen and F. A. Pollock, Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals, Phys. Rev. Lett. 123, 240602 (2019).
- V. Link, H.-H. Tu, and W. T. Strunz, Open quantum system dynamics from infinite tensor network contraction, arXiv:2307.01802.
- Y. Tanimura and R. Kubo, Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath, J. Phys. Soc. Jpn. 58, 101 (1988).
- Y. Tanimura, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (heom), J. Chem. Phys. 153, 020901 (2020).
- M. B. Oviedo, C. F. Negre, and C. G. Sánchez, Dynamical simulation of the optical response of photosynthetic pigments, Phys. Chem. Chem. Phys. 12, 6706 (2010).
- A. Strathearn, B. W. Lovett, and P. Kirton, Efficient real-time path integrals for non-Markovian spin-boson models, New J. Phys. 19, 093009 (2017).
- The tempo collaboration, OQuPy: A python 3 package to efficiently compute non-Markovian open quantum systems (2022), 10.5281/zenodo.4428316.
- E. Cassette, J. C. Dean, and G. D. Scholes, Two-dimensional visible spectroscopy for studying colloidal semiconductor nanocrystals, Small 12, 2234 (2016).
- C. L. Smallwood and S. T. Cundiff, Multidimensional coherent spectroscopy of semiconductors, Laser Photonics Rev. 12, 1800171 (2018).
- W. Tao, Y. Zhang, and H. Zhu, Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications, Accounts of Chemical Research 55, 345 (2022).
- M. Suzuki, General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys. Lett. A 165, 387 (1992).
- R. P. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. of Phys. 24, 118 (1963).
- N. Makri and D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density matrices. I. theory, J. Chem. Phys. 102, 4600 (1995a).
- N. Makri and D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density matrices. II. numerical methodology, J. Chem. Phys. 102, 4611 (1995b).
- R. Hartmann and W. T. Strunz, Accuracy assessment of perturbative master equations: Embracing nonpositivity, Phys. Rev. A 101, 012103 (2020).
- T. Holstein, Studies of polaron motion: Part I. The molecular-crystal model, Ann. Phys. 8, 325 (1959).
- A. Nazir and D. P. S. McCutcheon, Modelling exciton–phonon interactions in optically driven quantum dots, J. Phys.: Condens. Matter 28, 103002 (2016).