Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computer Vision for Multimedia Geolocation in Human Trafficking Investigation: A Systematic Literature Review (2402.15448v1)

Published 23 Feb 2024 in cs.CV, cs.AI, and cs.CY

Abstract: The task of multimedia geolocation is becoming an increasingly essential component of the digital forensics toolkit to effectively combat human trafficking, child sexual exploitation, and other illegal acts. Typically, metadata-based geolocation information is stripped when multimedia content is shared via instant messaging and social media. The intricacy of geolocating, geotagging, or finding geographical clues in this content is often overly burdensome for investigators. Recent research has shown that contemporary advancements in artificial intelligence, specifically computer vision and deep learning, show significant promise towards expediting the multimedia geolocation task. This systematic literature review thoroughly examines the state-of-the-art leveraging computer vision techniques for multimedia geolocation and assesses their potential to expedite human trafficking investigation. This includes a comprehensive overview of the application of computer vision-based approaches to multimedia geolocation, identifies their applicability in combating human trafficking, and highlights the potential implications of enhanced multimedia geolocation for prosecuting human trafficking. 123 articles inform this systematic literature review. The findings suggest numerous potential paths for future impactful research on the subject.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (126)
  1. Operations research and analytics to combat human trafficking: A systematic review of academic literature. PLoS one 2022;17(8):e0273708.
  2. Kshetri N. Regulatory technology and supervisory technology: Current status, facilitators, and barriers. Computer 2023;56(01):64–75. doi:10.1109/MC.2022.3205780.
  3. Urban image geo-localization using open data on public spaces. 2022:50–56. URL: https://www.researchgate.net/publication/364252863_Urban_Image_Geo-Localization_Using_Open_Data_on_Public_Spaces. doi:10.1145/3549555.3549589.
  4. A revisited visual-based geolocalization framework for forensic investigation support tools. Forensic Science International: Digital Investigation 2020;35:301088. URL: https://www.sciencedirect.com/science/article/pii/S2666281720303905. doi:https://doi.org/10.1016/j.fsidi.2020.301088.
  5. Aronson JD. Computer vision and machine learning for human rights video analysis: Case studies, possibilities, concerns, and limitations. Law & Social Inquiry 2018;43(4):1188–1209. doi:https://doi.org/10.1111/lsi.12353.
  6. Revisiting im2gps in the deep learning era. In: 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2640–2649. doi:10.1109/ICCV.2017.286.
  7. Jaeyoung Choi GFe. Multimodal Location Estimation of Videos and Images. 1 ed.; Springer International Publishing; 2015. ISBN 978-3-319-09860-9,978-3-319-09861-6. URL: http://gen.lib.rus.ec/book/index.php?md5=5c5f9e64ebb1bda87b88dfe1efdd22f5. doi:10.1007/978-3-319-09861-6.
  8. Multimodal location estimation. In: Proceedings of the 18th ACM International Conference on Multimedia. MM ’10; New York, NY, USA: Association for Computing Machinery. ISBN 9781605589336; 2010:1245–1252. URL: https://doi.org/10.1145/1873951.1874197. doi:10.1145/1873951.1874197.
  9. Comparative study of trust modeling for automatic landmark tagging. IEEE Transactions on Information Forensics and Security 2013;8(6):911–923. doi:10.1109/TIFS.2013.2242889.
  10. Image provenance analysis at scale. IEEE Transactions on Image Processing 2018;27(12):6109–6123. doi:10.1109/TIP.2018.2865674.
  11. ChatGPT for digital forensic investigation: The good, the bad, and the unknown. Forensic Science International: Digital Investigation 2023;46:301609. URL: https://www.sciencedirect.com/science/article/pii/S266628172300121X. doi:https://doi.org/10.1016/j.fsidi.2023.301609.
  12. A new spatial spherical pattern model into interactive cartography pattern: multi-dimensional data via geostrategic cluster. Multimedia Tools and Applications 2022;81. doi:10.1007/s11042-021-11339-4.
  13. Ripa: Real-time image privacy alert system. In: 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). 2018:136–145. doi:10.1109/CIC.2018.00029.
  14. Finding trafficked children through crowdsourcing: a usability evaluation. Aslib Journal of Information Management 2021;ahead-of-print. doi:10.1108/AJIM-08-2020-0254.
  15. A new deep model for family and non-family photo identification. Multimedia Tools and Applications 2022a;81(2):1765–1785. URL: https://doi.org/10.1007/s11042-021-11631-3. doi:10.1007/s11042-021-11631-3.
  16. Audio analytics-based human trafficking detection framework for autonomous vehicles. 2022. doi:arxiv-2209.04071.
  17. Ai for detection of missing person. In: 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). 2022:66–73. doi:10.1109/ICAAIC53929.2022.9792672.
  18. Twitter and human trafficking: Purposes, actors and topics in the spanish-speaking scene. Comunicar 2022;30(71):79–91.
  19. Ethical tensions in applications of ai for addressing human trafficking: A human rights perspective. Proc ACM Hum-Comput Interact 2022;6(CSCW2). URL: https://doi.org/10.1145/3555186. doi:10.1145/3555186.
  20. Detection and characterization of human trafficking networks using unsupervised scalable text template matching. In: 2018 IEEE International Conference on Big Data (Big Data). 2018a:3111–3120. doi:10.1109/BigData.2018.8622189.
  21. Combating human trafficking via automatic osint collection, validation and fusion. In: ICWSM Workshops. 2021:URL: https://api.semanticscholar.org/CorpusID:237419932.
  22. Combating human trafficking with multimodal deep models. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics; 2017:1547–1556. URL: https://aclanthology.org/P17-1142. doi:10.18653/v1/P17-1142.
  23. Paul Rupa A, Gangopadhyay A. Multi-modal deep learning based fusion approach to detect illicit retail networks from social media. In: 2020 International Conference on Computational Science and Computational Intelligence (CSCI). 2020:238–243. doi:10.1109/CSCI51800.2020.00047.
  24. A machine learning pipeline for aiding school identification from child trafficking images. In: Proceedings of the Conference on Information Technology for Social Good. GoodIT ’21; New York, NY, USA: Association for Computing Machinery. ISBN 9781450384780; 2021:297–300. URL: https://doi.org/10.1145/3462203.3475924. doi:10.1145/3462203.3475924.
  25. Children safety and rescue (censer) system for trafficked children from brothels in india. Proceedings of the AAAI Conference on Artificial Intelligence 2022;36(11):11917–11925. URL: https://ojs.aaai.org/index.php/AAAI/article/view/21449. doi:10.1609/aaai.v36i11.21449.
  26. Modelling of facial growth in czech children based on longitudinal data: Age progression from 12 to 15 years using 3d surface models. Forensic Science International 2014;248. doi:10.1016/j.forsciint.2014.12.005.
  27. Improving borderline adulthood facial age estimation through ensemble learning. In: Proceedings of the 14th International Conference on Availability, Reliability and Security. ACM; 2019:URL: https://doi.org/10.1145%2F3339252.3341491. doi:10.1145/3339252.3341491.
  28. Prediction of cyber-attacks and criminality using machine learning algorithms. In: 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). 2022:547–552. doi:10.1109/3ICT56508.2022.9990652.
  29. Raets S, Janssens J. Trafficking and technology: Exploring the role of digital communication technologies in the belgian human trafficking business. European Journal on Criminal Policy and Research 2021;27:1–24. doi:10.1007/s10610-019-09429-z.
  30. Large-scale multimedia content analysis using scientific workflows. In: Proceedings of the 21st ACM International Conference on Multimedia. MM ’13; New York, NY, USA: Association for Computing Machinery. ISBN 9781450324045; 2013:813–822. URL: https://doi.org/10.1145/2502081.2502082. doi:10.1145/2502081.2502082.
  31. Always lurking: Understanding and mitigating bias in online human trafficking detection. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. AIES ’18; New York, NY, USA: Association for Computing Machinery. ISBN 9781450360128; 2018:137–143. URL: https://doi.org/10.1145/3278721.3278782. doi:10.1145/3278721.3278782.
  32. Traffickcam: Crowdsourced and computer vision based approaches to fighting sex trafficking. In: 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). 2017:1–8. doi:10.1109/AIPR.2017.8457947.
  33. Piras L, Giacinto G. Information fusion in content based image retrieval: A comprehensive overview. Information Fusion 2017;37:50–60. URL: https://www.sciencedirect.com/science/article/pii/S1566253517300076. doi:https://doi.org/10.1016/j.inffus.2017.01.003.
  34. Horan C, Saiedian H. Cyber crime investigation: Landscape, challenges, and future research directions. Journal of Cybersecurity and Privacy 2021;1(4):580–596. URL: https://www.mdpi.com/2624-800X/1/4/29. doi:10.3390/jcp1040029.
  35. A novel face recognition model for fighting against human trafficking in surveillance videos and rescuing victims. Soft Computing 2022;27:1–16. doi:10.1007/s00500-022-06931-1.
  36. Zavrsnik A. Criminal justice, artificial intelligence systems, and human rights. ERA Forum 2020;20. doi:10.1007/s12027-020-00602-0.
  37. Machine learning for authorship attribution and cyber forensics. Springer; 2020.
  38. Ivasic-Kos M. Application of digital images and corresponding image retrieval paradigm. ENTRENOVA - ENTerprise REsearch InNOVAtion 2022;8(1):350–363. URL: https://hrcak.srce.hr/ojs/index.php/entrenova/article/view/23867. doi:10.54820/entrenova-2022-0030.
  39. Deep learning for vessel detection and identification from spaceborne optical imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2021;V-3-2021:303–310. doi:10.5194/isprs-annals-V-3-2021-303-2021.
  40. Hierarchy-dependent cross-platform multi-view feature learning for venue category prediction. IEEE Transactions on Multimedia 2019;21(6):1609–1619. doi:10.1109/TMM.2018.2876830.
  41. Deep learning-based landmark detection for mobile robot outdoor localization. Machines 2019;7(2). URL: https://www.mdpi.com/2075-1702/7/2/25. doi:10.3390/machines7020025.
  42. Ammatmanee C, Gan L. Transfer learning for hostel image classification. Data Technologies and Applications 2021;ahead-of-print. doi:10.1108/DTA-02-2021-0042.
  43. Large-scale architectural asset extraction from panoramic imagery. IEEE Transactions on Visualization and Computer Graphics 2022;28(2):1301–1316. doi:10.1109/TVCG.2020.3010694.
  44. Global forensic geolocation with deep neural networks. 2019.
  45. Learning a dynamic map of visual appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:12435–12444.
  46. Evaluation of image inpainting for classification and retrieval. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). 2020:1049–1058. doi:10.1109/WACV45572.2020.9093362.
  47. Search by image. new search engine service model. In: 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). 2018:181–186. doi:10.1109/INFOCOMMST.2018.8632117.
  48. Semi-supervised vision-based maritime surveillance system using fused visual attention maps. Multimedia Tools and Applications 2015;75. doi:10.1007/s11042-015-2512-x.
  49. A Feature Averaging Method for Kinship Verification: Proceeding of CISC 2017. ISBN 978-981-13-0616-7; 2019:381–391. doi:10.1007/978-981-13-0617-4_38.
  50. Leveraging multi-modal interactions among the intermediate representations of deep transformers for emotion recognition. In: Proceedings of the 3rd International on Multimodal Sentiment Analysis Workshop and Challenge. MuSe’ 22; New York, NY, USA: Association for Computing Machinery. ISBN 9781450394840; 2022:101–109. URL: https://doi.org/10.1145/3551876.3554813. doi:10.1145/3551876.3554813.
  51. Age-invariant adversarial feature learning for kinship verification. Mathematics 2022;10. doi:10.3390/math10030480.
  52. Toward Mass Video Data Analysis: Interactive and Immersive 4D Scene Reconstruction. Sensors 2020;20(18):5426. doi:10.3390/s20185426.
  53. Tiny object detection with context enhancement and feature purification. Expert Systems with Applications 2023;211:118665. URL: https://www.sciencedirect.com/science/article/pii/S0957417422017031. doi:https://doi.org/10.1016/j.eswa.2022.118665.
  54. Yuan Y. Geolocation of images taken indoors using convolutional neural network. Master’s thesis; Monash University, Melbourne, Australia; 2022.
  55. A new deep model for family and non-family photo identification. Multimedia Tools and Applications 2022b;81(2):1765–1785. URL: https://doi.org/10.1007/s11042-021-11631-3. doi:10.1007/s11042-021-11631-3.
  56. Revisiting near/remote sensing with geospatial attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022:1778–1787.
  57. Can we track targets from space? a hybrid kernel correlation filter tracker for satellite video. IEEE Transactions on Geoscience and Remote Sensing 2019a;57(11):8719–8731. doi:10.1109/TGRS.2019.2922648.
  58. Hrsiam: High-resolution siamese network, towards space-borne satellite video tracking. IEEE Transactions on Image Processing 2021;30:3056–3068. doi:10.1109/TIP.2020.3045634.
  59. Heatmap-guided balanced deep convolution networks for family classification in the wild. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019). 2019:1–5. doi:10.1109/FG.2019.8756557.
  60. Deshmukh T, Kokate D. Human face aging based on deep learning: A survey. In: Proceedings of the 3rd International Conference on Contents, Computing & Communication (2022). 2022:.
  61. Image privacy protection by particle swarm optimization based pivot pixel modification. In: Song W, Lee K, Yan Z, Zhang L, Chen H, eds. Internet of Things - ICIOT 2020 - 5th International Conference, Held as Part of the Services Conference Federation, SCF 2020, Honolulu, HI, USA, September 18-20, 2020, Proceedings; vol. 12405 of Lecture Notes in Computer Science. Springer; 2020:1–16. URL: https://doi.org/10.1007/978-3-030-59615-6_1. doi:10.1007/978-3-030-59615-6_1.
  62. Kato T. Database architecture for content-based image retrieval. In: Image Storage and Retrieval Systems; vol. 1662. SPIE; 1992:112–123.
  63. Second workshop on search and exploration of x-rated information (sexi’16): Wsdm workshop summary. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. WSDM ’16; New York, NY, USA: Association for Computing Machinery. ISBN 9781450337168; 2016:697–698. URL: https://doi.org/10.1145/2835776.2855118. doi:10.1145/2835776.2855118.
  64. Lallie HS, Chen TY. Geotract: Issues in pattern matching geospatial data on digital storage systems. In: 3rd International Conference on Cybercrime, Security and Digital Forensics, University of Cardiff, Cardiff, UK. 2013:.
  65. Validating the contextual information of outdoor images for photo misuse detection. 2018b.
  66. Kakar P, Sudha N. Authenticating image metadata elements using geolocation information and sun direction estimation. In: 2012 IEEE International Conference on Multimedia and Expo. 2012:236–241. doi:10.1109/ICME.2012.82.
  67. Multimedia pivot tables for multimedia analytics on image collections. IEEE Transactions on Multimedia 2016;18(11):2217–2227. URL: https://doi.org/10.1109/TMM.2016.2614380. doi:10.1109/TMM.2016.2614380.
  68. Indexing open imagery to create tools to fight sex trafficking. In: 2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). 2015:1–6. doi:10.1109/AIPR.2015.7444535.
  69. Invisible geo-location signature in a single image. IEEE Transactions on Information Forensics and Security 2022;17:2598–2613. doi:10.1109/TIFS.2022.3185775.
  70. Landmark image retrieval by jointing feature refinement and multimodal classifier learning. IEEE Transactions on Cybernetics 2018;48(6):1682–1695. doi:10.1109/TCYB.2017.2712798.
  71. Timestamp estimation from outdoor scenes. In: Annual ADFSL Conference on Digital Forensics, Security and Law. 2022:.
  72. icop: Live forensics to reveal previously unknown criminal media on p2p networks. Digital Investigation 2016;18:50–64. URL: https://www.sciencedirect.com/science/article/pii/S1742287616300779. doi:https://doi.org/10.1016/j.diin.2016.07.002.
  73. Content-aware detection of temporal metadata manipulation. IEEE Transactions on Information Forensics and Security 2022;17:1316–1327. doi:10.1109/TIFS.2022.3159154.
  74. Are you lying: Validating the time-location of outdoor images. In: Gollmann D, Miyaji A, Kikuchi H, eds. Applied Cryptography and Network Security. Cham: Springer International Publishing. ISBN 978-3-319-61204-1; 2017:103–123. doi:10.1007/978-3-319-61204-1_6.
  75. Mattmann CA, Sharan M. Scalable hadoop-based pooled time series of big video data from the deep web. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval. ICMR ’17; New York, NY, USA: Association for Computing Machinery. ISBN 9781450347013; 2017:117–120. URL: https://doi.org/10.1145/3078971.3079019. doi:10.1145/3078971.3079019.
  76. Bessinger Z, Jacobs N. A generative model of worldwide facial appearance. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE; 2019:1569–1578.
  77. News authentication and tampered images: evaluating the photo-truth impact through image verification algorithms. Heliyon 2020;6(12):e05808. URL: https://www.sciencedirect.com/science/article/pii/S2405844020326517. doi:https://doi.org/10.1016/j.heliyon.2020.e05808.
  78. Multi-source fusion based geo-tagging for web images. Multimedia Tools and Applications 2018;77:16399–16417. doi:https://doi.org/10.1007/s11042-017-5211-y.
  79. Mookdarsanit P, Rattanasiriwongwut M. Location estimation of a photo: A geo-signature mapreduce workflow. Engineering Journal 2017;21:295–308. doi:10.4186/EJ.2017.21.3.295.
  80. Kuznetsov A, Myasnikov V. New algorithms for satellite data verification with and without the use of the imaged area vector data. In: WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision. Václav Skala-UNION Agency; 2015:.
  81. A deep learning semantic template matching framework for remote sensing image registration. ISPRS Journal of Photogrammetry and Remote Sensing 2021;181:205–217. URL: https://www.sciencedirect.com/science/article/pii/S0924271621002446. doi:https://doi.org/10.1016/j.isprsjprs.2021.09.012.
  82. Toward seamless multiview scene analysis from satellite to street level. Proceedings of the IEEE 2017;105(10):1884–1899. doi:10.1109/JPROC.2017.2684300.
  83. Ilčev S. Global Satellite Meteorological Observation (GSMO) Applications: Volume 2. 2019. ISBN 978-3-319-67046-1. doi:10.1007/978-3-319-67047-8.
  84. Tracking objects from satellite videos: A velocity feature based correlation filter. IEEE Transactions on Geoscience and Remote Sensing 2019b;57(10):7860–7871. doi:10.1109/TGRS.2019.2916953.
  85. Novel aerial 3d mapping system based on uav platforms and 2d laser scanners. Journal of Sensors 2016;2016:1–8. doi:10.1155/2016/4158370.
  86. Vein pattern visualization through multiple mapping models and local parameter estimation for forensic investigation. In: 2014 22nd International Conference on Pattern Recognition. 2014:160–165. doi:10.1109/ICPR.2014.37.
  87. Deepdive: Declarative knowledge base construction. Commun ACM 2017;60(5):93–102. URL: https://doi.org/10.1145/3060586. doi:10.1145/3060586.
  88. Al-Kuwari S, Wolthusen SD. Probabilistic vehicular trace reconstruction based on rf-visual data fusion. In: De Decker B, Schaumüller-Bichl I, eds. Communications and Multimedia Security. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-13241-4; 2010:16–27.
  89. Chapter 11 - forensic visualization: Survey and future research directions. In: Choo KKR, Dehghantanha A, eds. Contemporary Digital Forensic Investigations of Cloud and Mobile Applications. Syngress. ISBN 978-0-12-805303-4; 2017:163–184. URL: https://www.sciencedirect.com/science/article/pii/B9780128053034000113. doi:https://doi.org/10.1016/B978-0-12-805303-4.00011-3.
  90. Assessing the influencing factors on the accuracy of underage facial age estimation. In: 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). 2020:1–8. doi:10.1109/CyberSecurity49315.2020.9138851.
  91. Sukumar SR. Open research challenges with big data — a data-scientist’s perspective. In: 2015 IEEE International Conference on Big Data (Big Data). 2015a:1272–1278. doi:10.1109/BigData.2015.7363882.
  92. The 2021 Hotel-ID to Combat Human Trafficking Competition Dataset. 2021.
  93. Unmasking human trafficking risk in commercial sex supply chains with machine learning. SSRN Electronic Journal 2021;doi:10.2139/ssrn.3866259.
  94. Vein pattern visualisation and feature extraction using sparse auto-encoder for forensic purposes. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 2019a:1–8. doi:10.1109/AVSS.2019.8909860.
  95. Alruwaili FF. Custodyblock: A distributed chain of custody evidence framework. Information 2021;12(2):88. URL: http://dx.doi.org/10.3390/info12020088. doi:10.3390/info12020088.
  96. Citesranger: Illegal wildlife trade detection tool. 2018.
  97. Detection of possible illicit messages using natural language processing and computer vision on twitter and linked websites. IEEE Access 2020;8:44534–44546. doi:10.1109/ACCESS.2020.2976530.
  98. Statistical methods for the forensic analysis of geolocated event data. Forensic Science International: Digital Investigation 2020;33:301009. URL: https://www.sciencedirect.com/science/article/pii/S2666281720302584. doi:https://doi.org/10.1016/j.fsidi.2020.301009.
  99. SoK: Cross-border criminal investigations and digital evidence. Journal of Cybersecurity 2022;8(1):tyac014. URL: https://doi.org/10.1093/cybsec/tyac014. doi:10.1093/cybsec/tyac014.
  100. Media forensics. In: Information Hiding. 9; Artech House; 2016:231–259.
  101. Camforensics: Understanding visual privacy leaks in the wild. In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. SenSys ’17; New York, NY, USA: Association for Computing Machinery. ISBN 9781450354592; 2017:URL: https://doi.org/10.1145/3131672.3131683. doi:10.1145/3131672.3131683.
  102. Vein pattern visualisation and feature extraction using sparse auto-encoder for forensic purposes. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 2019b:1–8. doi:10.1109/AVSS.2019.8909860.
  103. Vein pattern visualisation using conditional generative adversarial networks. In: 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). 2020:1310–1316.
  104. Chhoriya P. Automated criminal identification system using face detection and recognition. International Research Journal of Engineering and Technology (IRJET) 2019;6(10):910–914.
  105. Sukumar SR. Open research challenges with big data — a data-scientist’s perspective. In: 2015 IEEE International Conference on Big Data (Big Data). 2015b:1272–1278. doi:10.1109/BigData.2015.7363882.
  106. Trafficvis: Visualizing organized activity and spatio-temporal patterns for detecting and labeling human trafficking. IEEE Transactions on Visualization and Computer Graphics 2023;29(1):53–62. doi:10.1109/TVCG.2022.3209403.
  107. An approach for automatic and large scale image forensics. In: Proceedings of the 2nd International Workshop on Multimedia Forensics and Security. MFSec ’17; New York, NY, USA: Association for Computing Machinery. ISBN 9781450350341; 2017:16–20. URL: https://doi.org/10.1145/3078897.3080536. doi:10.1145/3078897.3080536.
  108. Kejriwal M, Szekely P. Technology-assisted investigative search: A case study from an illicit domain. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. CHI EA ’18; New York, NY, USA: Association for Computing Machinery. ISBN 9781450356213; 2018:1–9. URL: https://doi.org/10.1145/3170427.3174364. doi:10.1145/3170427.3174364.
  109. 3m-transformers for event coding on organized crime domain. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA). 2021:1–10. doi:10.1109/DSAA53316.2021.9564232.
  110. The 5th recognizing families in the wild data challenge: Predicting kinship from faces. In: 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021). Los Alamitos, CA, USA: IEEE Computer Society; 2021:1–7. URL: https://doi.ieeecomputersociety.org/10.1109/FG52635.2021.9666990. doi:10.1109/FG52635.2021.9666990.
  111. Knowledge-based tensor subspace analysis system for kinship verification. Neural Networks 2022;151:222–237. URL: https://www.sciencedirect.com/science/article/pii/S0893608022000983. doi:https://doi.org/10.1016/j.neunet.2022.03.020.
  112. Cross-generation kinship verification with sparse discriminative metric. IEEE Transactions on Pattern Analysis & Machine Intelligence 2019;41(11):2783–2790. doi:10.1109/TPAMI.2018.2861871.
  113. Family classification and kinship verification from facial images in the wild. Machine Vision and Applications 2022;33. doi:10.1007/s00138-022-01341-7.
  114. Yan H, Song C. Multi-scale deep relational reasoning for facial kinship verification. Pattern Recognition 2021;110:107541. URL: https://www.sciencedirect.com/science/article/pii/S0031320320303447. doi:https://doi.org/10.1016/j.patcog.2020.107541.
  115. Semi-coupled synthesis and analysis dictionary pair learning for kinship verification. IEEE Transactions on Circuits and Systems for Video Technology 2021;31(5):1939–1952. doi:10.1109/TCSVT.2020.3017683.
  116. Chandaliya PK, Nain N. Conditional perceptual adversarial variational autoencoder for age progression and regression on child face. In: 2019 International Conference on Biometrics (ICB). 2019:1–8. doi:10.1109/ICB45273.2019.8987410.
  117. Visual kinship recognition of families in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 2018a;PP:1–1. doi:10.1109/TPAMI.2018.2826549.
  118. To recognize families in the wild: A machine vision tutorial. In: Proceedings of the 26th ACM International Conference on Multimedia. MM ’18; New York, NY, USA: Association for Computing Machinery. ISBN 9781450356657; 2018b:2096–2097. URL: https://doi.org/10.1145/3240508.3241471. doi:10.1145/3240508.3241471.
  119. Goyal A, Meenpal T. Patch-based dual-tree complex wavelet transform for kinship recognition. IEEE Transactions on Image Processing 2021;30:191–206. doi:10.1109/TIP.2020.3034027.
  120. Abbas A, Shoaib M. Kinship identification using age transformation and siamese network. PeerJ Computer Science 2022;8:e987.
  121. Hotels-50k: A global hotel recognition dataset. Proceedings of the AAAI Conference on Artificial Intelligence 2019;33:726–733. doi:10.1609/aaai.v33i01.3301726.
  122. Evaluating automated facial age estimation techniques for digital forensics. In: 2018 IEEE Security and Privacy Workshops (SPW). 2018:129–139. doi:10.1109/SPW.2018.00028.
  123. Synthetic face aging using cyclegan. Available at SSRN 4172218 2022;.
  124. Sok: exploring the state of the art and the future potential of artificial intelligence in digital forensic investigation. In: Proceedings of the 15th International Conference on Availability, Reliability and Security. ARES ’20; New York, NY, USA: Association for Computing Machinery. ISBN 9781450388337; 2020:URL: https://doi.org/10.1145/3407023.3407068. doi:10.1145/3407023.3407068.
  125. Human age estimation from gene expression data using artificial neural networks. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Los Alamitos, CA, USA: IEEE Computer Society; 2021:3492–3497. URL: https://doi.ieeecomputersociety.org/10.1109/BIBM52615.2021.9669893. doi:10.1109/BIBM52615.2021.9669893.
  126. Chandaliya PK, Nain N. Child face age progression and regression using self-attention multi-scale patch gan. In: 2021 IEEE International Joint Conference on Biometrics (IJCB). 2021:1–8. doi:10.1109/IJCB52358.2021.9484329.

Summary

We haven't generated a summary for this paper yet.