Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is a model equivalent to its computer implementation? (2402.15364v1)

Published 23 Feb 2024 in cs.CY and quant-ph

Abstract: A recent trend in mathematical modeling is to publish the computer code together with the research findings. Here we explore the formal question, whether and in which sense a computer implementation is distinct from the mathematical model. We argue that, despite the convenience of implemented models, a set of implicit assumptions is perpetuated with the implementation to the extent that even in widely used models the causal link between the (formal) mathematical model and the set of results is no longer certain. Moreover, code publication is often seen as an important contributor to reproducible research, we suggest that in some cases the opposite may be true. A new perspective on this topic stems from the accelerating trend that in some branches of research only implemented models are used, e.g., in AI. With the advent of quantum computers we argue that completely novel challenges arise in the distinction between models and implementations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. A.-L. Boulesteix, Over-optimism in bioinformatics research, Bioinformatics 26, 437 (2010).
  2. M. Miłkowski, W. M. Hensel, and M. Hohol, Replicability or reproducibility? on the replication crisis in computational neuroscience and sharing only relevant detail, Journal of computational neuroscience 45, 163 (2018).
  3. V. Stodden, P. Guo, and Z. Ma, Toward reproducible computational research: an empirical analysis of data and code policy adoption by journals, PloS one 8, e67111 (2013).
  4. C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Reviews of modern physics 81, 591 (2009).
  5. E. J. d. A. L. Pereira, M. F. da Silva, and H. d. B. Pereira, Econophysics: Past and present, Physica A: Statistical Mechanics and its Applications 473, 251 (2017).
  6. Y. Holovatch, R. Kenna, and S. Thurner, Complex systems: physics beyond physics, European Journal of Physics 38, 023002 (2017).
  7. M. Barthelemy, The statistical physics of cities, Nature Reviews Physics 1, 406 (2019).
  8. S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of theoretical biology 22, 437 (1969).
  9. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Physical review A 38, 364 (1988).
  10. J. Gleick, Chaos: Making a new science (Penguin, 2008).
  11. E. N. Lorenz, Deterministic nonperiodic flow, Journal of atmospheric sciences 20, 130 (1963).
  12. S. Höpfl, J. Pleiss, and N. E. Radde, Bayesian estimation reveals that reproducible models in systems biology get more citations, Scientific Reports 13, 2695 (2023).
  13. G. Farmelo, ed., It must be beautiful - great equations of modern science (Granta Books, 2002).
  14. Without loss of generality we consider only pure states, i.e. states to which no classical uncertainty is added.
  15. R. M. May, Uses and abuses of mathematics in biology, Science 303, 790 (2004).

Summary

We haven't generated a summary for this paper yet.