Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Whose Projection Postulate? (2402.15280v2)

Published 23 Feb 2024 in quant-ph and physics.hist-ph

Abstract: The projection postulate is a description of the effect on a quantum system, assumed to be in a pure state, of a measurement of an observable with a discrete spectrum, in nonrelativistic quantum mechanics. It is often called "von Neumann's projection postulate" or "the L\"uders rule". This paper is an examination of the versions of this postulate due to Dirac, von Neumann and L\"uders. It is shown that Dirac, in 1930, proposed what is now generally known as the projection postulate. Von Neumann, in 1932, gave a different theory which only applies in special and rather unusual cases. L\"uders, in 1951, rejected this theory and presented one which is the same as Dirac's. Treatments of observables with continuous spectra by both Dirac and von Neumann are criticised, and the possibility of a generalised version of the projection postulate for this case is considered. The paper concludes with a discussion of the status of the projection postulate (in its various forms) as a separate postulate (independent of the other postulates of quantum mechanics) and as a separate form of time development (in addition to the time-dependent Schr\"odinger equation).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A. Beige and G. C. Hegerfeldt. Projection postulate and atomic quantum Zeno effect. Phys. Rev. A, 53:53, 1996. arXiv:quant-ph/9512012.
  2. J. S. Bell. Against “measurement”. Physics World, 3(8):33–40, August 1990.
  3. Operational quantum physics. Springer, 1997.
  4. P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford University Press, 1930.
  5. Measurement in quantum field theory. Encyclopedia of Mathematical Physics, to appear. arXiv:2304.13356.
  6. Hugh Everett III. “Relative state” formulation of quantum mechanics. Rev. Mod. Phys., 29:141–153, 1957.
  7. C. J. Isham. Lectures on Quantum Theory. Imperial College Press, 1995.
  8. Wolfgang Pauli. General Principles of Quantum Mechanics. Springer-Verlag, 1980.
  9. Asher Peres. Quantum Theory: Concepts and Methods. Kluwer, 1993.
  10. J. C. Polkinghorne. Dirac and the interpretation of quantum mechanics. In Behram N. Kursunoglu and Eugene P. Wigner, editors, Paul Adrien Maurice Dirac: reminiscences about a great physicist, pages 228–230. Cambridge University Press, 1987.
  11. Erwin Schrödinger. July 1952 colloquium. In M. Bitbol, editor, The Interpretation of Quantum Mechanics: Dublin Seminars (1949-1955) and other unpublished essays, pages 19–37. Ox Bow Press, 1996.
  12. Anthony Sudbery. Quantum Mechanics and the Particles of Nature. Cambridge University Press, 1986.
  13. Anthony Sudbery. Einstein and Tagore, Newton and Blake, Everett and Bohr: the dual nature of reality. In P. Ghose, editor, The nature of reality: the perennial debate. Routledge, 2016. arXiv:1205.1479.
  14. Anthony Sudbery. Histories without collapse. Int. J. Theor. Phys., 61:39, 2022. arXiv:2012.13430.
  15. Tony Sudbery. Continuous state reduction. In R. Penrose and C. J. Isham, editors, Quantum concepts in space and time, pages 65–83. Oxford University Press, 1986.
  16. J. von Neumann. Mathematische Begründung der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, pages 1–57, 1927.
  17. J. von Neumann. Thermodynamik quantenmechanischer Gesamtheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, pages 273–291, 1927.
  18. J. von Neumann. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, pages 245–272, 1927.
  19. J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1955. translated by Robert T. Beyer. Originally published 1932.
  20. J. A. Wheeler. Assessment of Everett’s “relative state” formulation of quantum theory. Rev. Mod. Phys., 29:463–465, 1957.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)