Descripción automática de secciones delgadas de rocas: una aplicación Web (2402.15039v1)
Abstract: The identification and characterization of various rock types is one of the fundamental activities for geology and related areas such as mining, petroleum, environment, industry and construction. Traditionally, a human specialist is responsible for analyzing and explaining details about the type, composition, texture, shape and other properties using rock samples collected in-situ or prepared in a laboratory. The results become subjective based on experience, in addition to consuming a large investment of time and effort. The present proposal uses artificial intelligence techniques combining computer vision and natural language processing to generate a textual and verbal description from a thin section image of rock. We build a dataset of images and their respective textual descriptions for the training of a model that associates the relevant features of the image extracted by EfficientNetB7 with the textual description generated by a Transformer network, reaching an accuracy value of 0.892 and a BLEU value of 0.71. This model can be a useful resource for research, professional and academic work, so it has been deployed through a Web application for public use.
- \APACrefYear1998. \APACrefbtitleCarbonate sediments and rocks under the microscope: a colour atlas Carbonate sediments and rocks under the microscope: a colour atlas. \APACaddressPublisherCRC Press. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAutomatic classification of plutonic rocks with deep learning Automatic classification of plutonic rocks with deep learning.\BBCQ \APACjournalVolNumPagesApplied Computing and Geosciences10100061. {APACrefURL} https://www.sciencedirect.com/science/article/pii/S2590197421000094 {APACrefDOI} \doihttps://doi.org/10.1016/j.acags.2021.100061 \PrintBackRefs\CurrentBib
- \APACinsertmetastarBGS2024{APACrefauthors}British Geological Survey. \APACrefYearMonthDay2024. \APACrefbtitleBRITROCKS: mineralogy and petrology collections database. Britrocks: mineralogy and petrology collections database. {APACrefURL} https://www.bgs.ac.uk/technologies/databases/bgs-rock-collections/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
- \APACinsertmetastarcastro1991petrografia{APACrefauthors}Castro, A. \APACrefYearMonthDay1991. \APACrefbtitlePetrografía básica. Petrografía básica. \APACaddressPublisherParaninfo. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleRock image classification using deep residual neural network with transfer learning Rock image classification using deep residual neural network with transfer learning.\BBCQ \APACjournalVolNumPagesFrontiers in Earth Science10. \PrintBackRefs\CurrentBib
- \APACinsertmetastarDagostino_Early_stop{APACrefauthors}D’Agostino, A. \APACrefYearMonthDay2022. \APACrefbtitleEarly Stopping in TensorFlow — prevent overfitting of a neural network. Early stopping in tensorflow — prevent overfitting of a neural network. {APACrefURL} https://towardsdatascience.com/ \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay\bibnodate. \APACrefbtitleVirtual Petrography. Virtual petrography. {APACrefURL} https://planetearth.utsc.utoronto.ca/VirtualMic/ \APACrefnoteUniversity of Toronto. Último acceso: 2023-12-19 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitlePetrographic microfacies classification with deep convolutional neural networks Petrographic microfacies classification with deep convolutional neural networks.\BBCQ \APACjournalVolNumPagesComputers & geosciences142. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2009. \BBOQ\APACrefatitleImagenet: A large-scale hierarchical image database Imagenet: A large-scale hierarchical image database.\BBCQ \BIn \APACrefbtitle2009 IEEE conference on computer vision and pattern recognition 2009 ieee conference on computer vision and pattern recognition (\BPGS 248–255). \PrintBackRefs\CurrentBib
- \APACinsertmetastarDerochette2021{APACrefauthors}Derochette, J. \APACrefYearMonthDay2021. \APACrefbtitleMinerals Microscopy and Spectroscopy. Minerals microscopy and spectroscopy. {APACrefURL} http://jm-derochette.be/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleA deep learning model for quick and accurate rock recognition with smartphones. Mob A deep learning model for quick and accurate rock recognition with smartphones. mob.\BBCQ \APACjournalVolNumPagesInf. Syst2020. \PrintBackRefs\CurrentBib
- \APACinsertmetastarFrederik_drop{APACrefauthors}Frederik, V. \APACrefYearMonthDay2023. \APACrefbtitleInterpreting Training/Validation Accuracy and Loss. Interpreting training/validation accuracy and loss. {APACrefURL} https://medium.com/@frederik.vl/interpreting-training-validation-accuracy-and-loss-cf16f0d5329f \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
- \APACinsertmetastarHollochersf{APACrefauthors}Hollocher, K. \APACrefYearMonthDay\bibnodate. \APACrefbtitlePetrology, GEO-320. Petrology, geo-320. {APACrefURL} https://muse.union.edu/hollochk/kurt-hollocher/petrology/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleRock Image Classification Based on EfficientNet and Triplet Attention Mechanism Rock image classification based on efficientnet and triplet attention mechanism.\BBCQ \APACjournalVolNumPagesApplied Sciences135. \PrintBackRefs\CurrentBib
- \APACinsertmetastarMindat{APACrefauthors}Hudson Institute of Mineralogy. \APACrefYearMonthDay2023. \APACrefbtitleMindat.org. Mindat.org. {APACrefURL} https://www.mindat.org/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
- \APACrefYear1996. \APACrefbtitleAtlas en Color Rocas y Minerales Lamina Delgada Atlas en color rocas y minerales lamina delgada. \APACaddressPublisherElsevier España. \PrintBackRefs\CurrentBib
- \APACrefYear2017. \APACrefbtitleRocks and minerals in thin section: A colour atlas Rocks and minerals in thin section: A colour atlas. \APACaddressPublisherCRC Press. \PrintBackRefs\CurrentBib
- \APACrefYear1982. \APACrefbtitleAtlas of igneous rocks and their textures Atlas of igneous rocks and their textures (\BVOL 148). \APACaddressPublisherLongman Harlow. \PrintBackRefs\CurrentBib
- \APACrefYear1984. \APACrefbtitleAtlas of sedimentary rocks under the microscope Atlas of sedimentary rocks under the microscope. \APACaddressPublisherLongman. \PrintBackRefs\CurrentBib
- \APACinsertmetastarMartin_Learn_rate{APACrefauthors}Martin, T. \APACrefYearMonthDay2023. \APACrefbtitleA (Very Short) Visual Introduction to Learning Rate Schedulers (With Code). A (very short) visual introduction to learning rate schedulers (with code). {APACrefURL} https://medium.com/@theom/a-very-short-visual-introduction-to-learning-rate-schedulers-with-code-189eddffdb00 \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleReconocimiento y descripción automática de rocas sedimentarias mediante Inteligencia Artificial Reconocimiento y descripción automática de rocas sedimentarias mediante inteligencia artificial.\BBCQ \APACjournalVolNumPagesVIII Congreso Internacional de Investigación. REDU. Universidad Técnica de Ambato. \PrintBackRefs\CurrentBib
- \APACinsertmetastarNain2021{APACrefauthors}Nain, A. \APACrefYearMonthDay2021. \APACrefbtitleImage captioning. Image captioning. \APACrefnoteCode examples-Computer Vision. [Source code]. Availability: https://keras.io/examples/vision/image_captioning/ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAutomatic classification of volcanic rocks from thin section images using transfer learning networks Automatic classification of volcanic rocks from thin section images using transfer learning networks.\BBCQ \APACjournalVolNumPagesNeural Computing and Applications331811531–11540. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleGuide to Thin Section Microscopy Guide to thin section microscopy.\BBCQ \PrintBackRefs\CurrentBib
- \APACinsertmetastarreiter2018BLEU{APACrefauthors}Reiter, E. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleA structured review of the validity of BLEU A structured review of the validity of bleu.\BBCQ \APACjournalVolNumPagesComputational Linguistics443393–401. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleIdentifying rock thin section based on convolutional neural networks Identifying rock thin section based on convolutional neural networks.\BBCQ \BIn \APACrefbtitleProceedings of the 2019 9th International Workshop on Computer Science and Engineering (WCSE 2019), Hong Kong, China Proceedings of the 2019 9th international workshop on computer science and engineering (wcse 2019), hong kong, china (\BPGS 15–17). \PrintBackRefs\CurrentBib
- \APACinsertmetastarSanz{APACrefauthors}Sanz, F. \APACrefYearMonthDay2024. \APACrefbtitleTransformer: la tecnología que domina el mundo. Transformer: la tecnología que domina el mundo. {APACrefURL} https://www.themachinelearners.com/transformer/#Que_es_un_Transformer \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
- \APACinsertmetastarStrekeisen2020{APACrefauthors}Strekeisen, A. \APACrefYearMonthDay2020. \APACrefbtitleAlex Strekeisen. I vetrini della mia fantasia. Alex strekeisen. i vetrini della mia fantasia. {APACrefURL} http://www.alexstrekeisen.it/english/index.php \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
- \APACinsertmetastarGeologicalS{APACrefauthors}The Geological Society of London. \APACrefYearMonthDay2014. \APACrefbtitleGeology for Society. Geology for society. {APACrefURL} https://www.geolsoc.org.uk/geology-for-society \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
- \APACinsertmetastarOpenUniversity2023{APACrefauthors}The Open University. \APACrefYearMonthDay2023. \APACrefbtitleVirtual Microscope. Virtual microscope. {APACrefURL} https://www.virtualmicroscope.org/collections \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
- \APACinsertmetastarUribe{APACrefauthors}Uribe, I. \APACrefYearMonthDay2023. \APACrefbtitleEl impacto de la Inteligencia Artificial en la toma de decisiones. El impacto de la inteligencia artificial en la toma de decisiones. {APACrefURL} https://secmotic.com/inteligencia-artificial-toma-decisiones/#gref \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleAttention is all you need Attention is all you need.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems30. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleCNN explainer: learning convolutional neural networks with interactive visualization Cnn explainer: learning convolutional neural networks with interactive visualization.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Visualization and Computer Graphics2721396-1406. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleDeep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection Deep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection.\BBCQ \APACjournalVolNumPagesJournal of Rock Mechanics and Geotechnical Engineering1441140–1152. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleIntelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms.\BBCQ \APACjournalVolNumPagesSensors19183914. \PrintBackRefs\CurrentBib