Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Spacecraft Formation Flying with Crazyflie Drones as Satellite Surrogates (2402.14750v1)

Published 22 Feb 2024 in cs.RO, cs.SY, and eess.SY

Abstract: As the space domain becomes increasingly congested, autonomy is proposed as one approach to enable small numbers of human ground operators to manage large constellations of satellites and tackle more complex missions such as on-orbit or in-space servicing, assembly, and manufacturing. One of the biggest challenges in developing novel spacecraft autonomy is mechanisms to test and evaluate their performance. Testing spacecraft autonomy on-orbit can be high risk and prohibitively expensive. An alternative method is to test autonomy terrestrially using satellite surrogates such as attitude test beds on air bearings or drones for translational motion visualization. Against this background, this work develops an approach to evaluate autonomous spacecraft behavior using a surrogate platform, namely a micro-quadcopter drone developed by the Bitcraze team, the Crazyflie 2.1. The Crazyflie drones are increasingly becoming ubiquitous in flight testing labs because they are affordable, open source, readily available, and include expansion decks which allow for features such as positioning systems, distance and/or motion sensors, wireless charging, and AI capabilities. In this paper, models of Crazyflie drones are used to simulate the relative motion dynamics of spacecraft under linearized Clohessy-Wiltshire dynamics in elliptical natural motion trajectories, in pre-generated docking trajectories, and via trajectories output by neural network control systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. S. Bandyopadhyay, G. P. Subramanian, R. Foust, D. Morgan, S.-J. Chung, and F. Hadaegh, “A review of impending small satellite formation flying missions,” in 53rd AIAA Aerospace Sciences Meeting, 2015, p. 1623.
  2. D. Piskorz and K. L. Jones, “On-orbit assembly of space assets: A path to affordable and adaptable space infrastructure,” The Aerospace Corporation, pp. 12–13, 2018.
  3. G. Slater, S. M. Byram, and T. Williams, “Collision avoidance for satellites in formation flight,” Journal of guidance, control, and dynamics, vol. 29, no. 5, pp. 1140–1146, 2006.
  4. N. Petit, M. Milam, and R. Murray, “Constrained trajectory generation for micro-satellite formation flying,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001, p. 4030.
  5. T. Campbell, R. Furfaro, R. Linares, and D. Gaylor, “A deep learning approach for optical autonomous planetary relative terrain navigation,” Spaceflight Mechanics, vol. 160, pp. 3293–3302, 2017.
  6. H. H. Lei, M. Shubert, N. Damron, K. Lang, and S. Phillips, “Deep reinforcement learning for multi-agent autonomous satellite inspection,” in 44th Annual AAS Guidance, Navigation and Control (GN&C) Conference, Breckenridge, CO, 2022.
  7. D. Pickem, L. Wang, P. Glotfelter, Y. Diaz-Mercado, M. Mote, A. Ames, E. Feron, and M. Egerstedt, “Safe, remote-access swarm robotics research on the robotarium,” arXiv preprint arXiv:1604.00640, 2016.
  8. D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt, “The robotarium: A remotely accessible swarm robotics research testbed,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 1699–1706.
  9. K. Hovell and S. Ulrich, “Deep reinforcement learning for spacecraft proximity operations guidance,” Journal of spacecraft and rockets, vol. 58, no. 2, pp. 254–264, 2021.
  10. Z. S. Lippay, M. Shubert†, D. Baker, A. A. Soderlund, and S. Phillips, “Emulation of close-proximity spacecraft dynamics in terrestrial environments using unmanned aerial vehicles,” in AIAA SciTech 2024 Forum, 2024, pp. 1–12.
  11. “Crazyflie 2.1,” 2023, accessed on July 28, 2023. [Online]. Available: https://www.bitcraze.io/products/crazyflie-2-1/
  12. W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, and P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering,” in 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR).   IEEE, 2017, pp. 37–42.
  13. J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig, “Learning to fly—a gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter control,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 7512–7519.
  14. K. Himanshu, J. V. Pushpangathan et al., “Waypoint navigation of quadrotor using deep reinforcement learning,” IFAC-PapersOnLine, vol. 55, no. 22, pp. 281–286, 2022.
  15. J. Förster, “System identification of the crazyflie 2.0 nano quadrocopter,” B.S. thesis, ETH Zurich, 2015.
  16. W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite rendezvous,” Journal of the aerospace sciences, vol. 27, no. 9, pp. 653–658, 1960.
  17. G. W. Hill, “Researches in the lunar theory,” American journal of Mathematics, vol. 1, no. 1, pp. 5–26, 1878.
  18. Y. K. Nakka, W. Hönig, C. Choi, A. Harvard, A. Rahmani, and S.-J. Chung, “Information-based guidance and control architecture for multi-spacecraft on-orbit inspection,” Journal of Guidance, Control, and Dynamics, vol. 45, no. 7, pp. 1184–1201, 2022.
  19. C. Luis and J. L. Ny, “Design of a trajectory tracking controller for a nanoquadcopter,” arXiv preprint arXiv:1608.05786, 2016.
  20. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in 2011 IEEE international conference on robotics and automation.   IEEE, 2011, pp. 2520–2525.
  21. A. El Asslouj and H. Rastgoftar, “Quadcopter tracking using euler-angle-free flatness-based control,” in 2023 European Control Conference (ECC).   IEEE, 2023, pp. 1–6.
  22. A. Javeed, V. L. Jiménez, and J. Grönqvist, “Reinforcement learning-based control of crazyflie 2. x quadrotor,” arXiv preprint arXiv:2306.03951, 2023.
  23. M. Cescon, “Flight arena,” 2023, accessed on July 13, 2023. [Online]. Available: https://cescon.me.uh.edu/facilities/
  24. A. Taffanel, B. Rousselot, J. Danielsson, K. McGuire, K. Richardsson, M. Eliasson, T. Antonsson, and W. Hönig, “Lighthouse positioning system: dataset, accuracy, and precision for uav research,” arXiv preprint arXiv:2104.11523, 2021.
  25. Bitcraze, “Generic setpoint crtp port,” 2023, accessed on July 13th, 2023. [Online]. Available: https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/crtp/
  26. ——, “The coordinate system of the crazyflie 2.x,” 2023, accessed on July 13, 2023. [Online]. Available: https://www.bitcraze.io/documentation/system/platform/cf2-coordinate-system/
  27. D. Arney, R. Sutherland, J. Mulvaney, D. Steinkoenig, C. Stockdale, and M. Farley, “On-orbit servicing, assembly, and manufacturing (osam) state of play,” 2021.
  28. N. Hamilton, K. Dunlap, T. T. Johnson, and K. L. Hobbs, “Ablation study of how run time assurance impacts the training and performance of reinforcement learning agents,” arXiv preprint arXiv:2207.04117, 2022.
  29. U. J. Ravaioli, J. Cunningham, J. McCarroll, V. Gangal, K. Dunlap, and K. L. Hobbs, “Safe reinforcement learning benchmark environments for aerospace control systems,” in 2022 IEEE Aerospace Conference (AERO).   IEEE, 2022, pp. 1–20.
  30. D. van Wijk, K. Dunlap, M. Majji, and K. L. Hobbs, “Deep reinforcement learning for autonomous spacecraft inspection using illumination,” arXiv preprint arXiv:2308.02743, 2023.
  31. J. Bowen, M. Villa, and A. Williams, “Cubesat based rendezvous, proximity operations, and docking in the cpod mission,” 2015.

Summary

We haven't generated a summary for this paper yet.