Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Two-stage Cytopathological Image Synthesis for Augmenting Cervical Abnormality Screening (2402.14707v2)

Published 22 Feb 2024 in cs.CV

Abstract: Automatic thin-prep cytologic test (TCT) screening can assist pathologists in finding cervical abnormality towards accurate and efficient cervical cancer diagnosis. Current automatic TCT screening systems mostly involve abnormal cervical cell detection, which generally requires large-scale and diverse training data with high-quality annotations to achieve promising performance. Pathological image synthesis is naturally raised to minimize the efforts in data collection and annotation. However, it is challenging to generate realistic large-size cytopathological images while simultaneously synthesizing visually plausible appearances for small-size abnormal cervical cells. In this paper, we propose a two-stage image synthesis framework to create synthetic data for augmenting cervical abnormality screening. In the first Global Image Generation stage, a Normal Image Generator is designed to generate cytopathological images full of normal cervical cells. In the second Local Cell Editing stage, normal cells are randomly selected from the generated images and then are converted to different types of abnormal cells using the proposed Abnormal Cell Synthesizer. Both Normal Image Generator and Abnormal Cell Synthesizer are built upon Stable Diffusion, a pre-trained foundation model for image synthesis, via parameter-efficient fine-tuning methods for customizing cytopathological image contents and extending spatial layout controllability, respectively. Our experiments demonstrate the synthetic image quality, diversity, and controllability of the proposed synthesis framework, and validate its data augmentation effectiveness in enhancing the performance of abnormal cervical cell detection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 71, no. 3, pp. 209–249, 2021.
  2. D. W. Cramer, “The role of cervical cytology in the declining morbidity and mortality of cervical cancer,” Cancer, vol. 34, no. 6, pp. 2018–2027, 1974.
  3. A. G. Siebers, P. J. Klinkhamer, J. M. Grefte, L. F. Massuger, J. E. Vedder, A. Beijers-Broos, J. Bulten, and M. Arbyn, “Comparison of liquid-based cytology with conventional cytology for detection of cervical cancer precursors: a randomized controlled trial,” Jama, vol. 302, no. 16, pp. 1757–1764, 2009.
  4. D. D. Davey, S. Naryshkin, M. L. Nielsen, and T. S. Kline, “Atypical squamous cells of undetermined significance: interlaboratory comparison and quality assurance monitors,” Diagnostic cytopathology, vol. 11, no. 4, pp. 390–396, 1994.
  5. Y. Xiang, W. Sun, C. Pan, M. Yan, Z. Yin, and Y. Liang, “A novel automation-assisted cervical cancer reading method based on convolutional neural network,” Biocybernetics and Biomedical Engineering, vol. 40, no. 2, pp. 611–623, 2020.
  6. M. Zhou, L. Zhang, X. Du, X. Ouyang, X. Zhang, Q. Shen, D. Luo, X. Fan, and Q. Wang, “Hierarchical pathology screening for cervical abnormality,” Computerized Medical Imaging and Graphics, vol. 89, p. 101892, 2021.
  7. L. Cao, J. Yang, Z. Rong, L. Li, B. Xia, C. You, G. Lou, L. Jiang, C. Du, H. Meng et al., “A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening,” Medical image analysis, vol. 73, p. 102197, 2021.
  8. Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” Proceedings of the IEEE, 2023.
  9. Z. Shen, X. Ouyang, Z. Wang, Y. Zhan, Z. Xue, Q. Wang, J.-Z. Cheng, and D. Shen, “Nodule synthesis and selection for augmenting chest x-ray nodule detection,” in Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing, China, October 29–November 1, 2021, Proceedings, Part III 4.   Springer, 2021, pp. 536–547.
  10. Z. Shen, X. Ouyang, B. Xiao, J.-Z. Cheng, D. Shen, and Q. Wang, “Image synthesis with disentangled attributes for chest x-ray nodule augmentation and detection,” Medical Image Analysis, vol. 84, p. 102708, 2023.
  11. X. Zhao, D. Zang, S. Wang, Z. Shen, K. Xuan, Z. Wei, Z. Wang, R. Zheng, X. Wu, Z. Li et al., “stbi-gan: An adversarial learning approach for data synthesis on traumatic brain segmentation,” Computerized Medical Imaging and Graphics, p. 102325, 2024.
  12. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
  13. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” in International Conference on Learning Representations, 2020.
  14. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.
  15. R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-or, “An image is worth one word: Personalizing text-to-image generation using textual inversion,” in The Eleventh International Conference on Learning Representations, 2022.
  16. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 500–22 510.
  17. N. Kumari, B. Zhang, R. Zhang, E. Shechtman, and J.-Y. Zhu, “Multi-concept customization of text-to-image diffusion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1931–1941.
  18. L. Han, Y. Li, H. Zhang, P. Milanfar, D. Metaxas, and F. Yang, “Svdiff: Compact parameter space for diffusion fine-tuning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 7323–7334.
  19. Y. Li, H. Liu, Q. Wu, F. Mu, J. Yang, J. Gao, C. Li, and Y. J. Lee, “Gligen: Open-set grounded text-to-image generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 511–22 521.
  20. L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3836–3847.
  21. C. Mou, X. Wang, L. Xie, J. Zhang, Z. Qi, Y. Shan, and X. Qie, “T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models,” arXiv preprint arXiv:2302.08453, 2023.
  22. E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen et al., “Lora: Low-rank adaptation of large language models,” in International Conference on Learning Representations, 2021.
  23. C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans et al., “Photorealistic text-to-image diffusion models with deep language understanding,” Advances in Neural Information Processing Systems, vol. 35, pp. 36 479–36 494, 2022.
  24. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
  25. L. Hou, A. Agarwal, D. Samaras, T. M. Kurc, R. R. Gupta, and J. H. Saltz, “Robust histopathology image analysis: To label or to synthesize?” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8533–8542.
  26. J. Ye, Y. Xue, P. Liu, R. Zaino, K. C. Cheng, and X. Huang, “A multi-attribute controllable generative model for histopathology image synthesis,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24.   Springer, 2021, pp. 613–623.
  27. Y. Xue, J. Ye, Q. Zhou, L. R. Long, S. Antani, Z. Xue, C. Cornwell, R. Zaino, K. C. Cheng, and X. Huang, “Selective synthetic augmentation with histogan for improved histopathology image classification,” Medical image analysis, vol. 67, p. 101816, 2021.
  28. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  29. J. Ye, H. Ni, P. Jin, S. X. Huang, and Y. Xue, “Synthetic augmentation with large-scale unconditional pre-training,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2023, pp. 754–764.
  30. Z. Shen, M. Cao, S. Wang, L. Zhang, and Q. Wang, “Cellgan: Conditional cervical cell synthesis for augmenting cytopathological image classification,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2023, pp. 487–496.
  31. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  32. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  33. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  34. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning.   PMLR, 2021, pp. 8748–8763.
  35. Y. Zhu, Z. Shen, Z. Zhao, S. Wang, X. Wang, X. Zhao, D. Shen, and Q. Wang, “Melo: Low-rank adaptation is better than fine-tuning for medical image diagnosis,” arXiv preprint arXiv:2311.08236, 2023.
  36. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
  37. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021.
  38. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2015.
  39. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International Conference on Learning Representations, 2020.
  40. J. Ho and T. Salimans, “Classifier-free diffusion guidance,” in NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications, 2021.
  41. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations, 2018.
  42. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
  43. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in neural information processing systems, vol. 30, 2017.
  44. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.
  45. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  46. M. Fei, X. Zhang, M. Cao, Z. Shen, X. Zhao, Z. Song, Q. Wang, and L. Zhang, “Robust cervical abnormal cell detection via distillation from local-scale consistency refinement,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2023, pp. 652–661.
  47. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  48. H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. Ni, and H.-Y. Shum, “Dino: Detr with improved denoising anchor boxes for end-to-end object detection,” in The Eleventh International Conference on Learning Representations, 2022.
  49. H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathematical statistics, pp. 400–407, 1951.
  50. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.   Springer, 2014, pp. 740–755.
  51. Y. Liang, Z. Tang, M. Yan, J. Chen, Q. Liu, and Y. Xiang, “Comparison detector for cervical cell/clumps detection in the limited data scenario,” Neurocomputing, vol. 437, pp. 195–205, 2021.
  52. Q. Hu, Y. Chen, J. Xiao, S. Sun, J. Chen, A. L. Yuille, and Z. Zhou, “Label-free liver tumor segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7422–7432.
  53. J. M. Dolezal, R. Wolk, H. M. Hieromnimon, F. M. Howard, A. Srisuwananukorn, D. Karpeyev, S. Ramesh, S. Kochanny, J. W. Kwon, M. Agni et al., “Deep learning generates synthetic cancer histology for explainability and education,” NPJ Precision Oncology, vol. 7, no. 1, p. 49, 2023.

Summary

We haven't generated a summary for this paper yet.